Устойчивое управление дренажными водами на трансграничном уровне.

Аталыев Какдурды – Заместитель министра водного хозяйства Туркменистана.

Характерной особенностью ведения орошаемого земледелия центральноазиатского региона является формирование огромного количества дренажных вод.

В годы интенсивного освоения новых орошаемых земель из общего объема поверхностных водных ресурсов 110-115 куб км формировались до 39-40 куб. км дренажных вод. За последние годы наблюдается снижение объема дренажного стока до 32-34 куб км, что связано с вынужденным сокращением удельной водоподачи на орошаемый гектар из-за чрезмерного расширения площадей орошаемых земель, развития промышленности и других водопотребляющих отраслей экономики, увеличения народонаселения при одинаковом уровне речного стока.

Динамика использования водно-земельных ресурсов в бассейне Аральского моря приводится в таблице.

Показатель	Ед.изм	1960	1970	1980	1990	2000
население	млн.чел.	14.1	20.0	26.8	33.6	41.5
площадь орошаемых земель	тыс.га	4510	5150	6920	7600	7990
суммарный водозабор	куб.км/год	60.61	94.56	120.69	116.27	105.0
в том числе на орошение	куб.км/год	56.15	86.84	106.79	106.4	94.66
удельный водозабор	куб м/га	12450	16860	15430	14000	11850

Как видно из вышеприведенного за период 1960-2000 годы население региона увеличилось почти в три раза, площади орошаемых земель возросли в 1,8 раза, суммарный водозабор, в том числе на орошение увеличился в 1,7 раза, а удельный водозабор на 1 га орошаемой площади постоянно сокращается.

Из общего обхема КДВ около 51% (18-20 куб.км) сбрасывается в реки, внося в них более 110-120 млн.тонн солей. Большой объем КДВ более 36% или 16-17 куб.м сбрасывается в естественные понижения и расходуется на испарение и фильтрацию, лишь незначительная доля (13% или 4-5 куб.м) повторно используется для орошения.

В общем водоотведении возвратных вод сточные воды промышленности и коммунально-бытового сектора, как правило, отводится совместно с дренажным стоком, в особенности, когда они сбрасываются в бассейны рек или в естественные понижения местности. Поэтому при разработке мероприятий при их утилизации целесообразно рассмотреть их совместно, но при этом нужно иметь ввиду. Что сточные воды промкомбыта являются более закрязненными.

Формирование возвратных вод и водоотведение в бассейне Аральского моря приводится в таблице.

куб км в год

	Коллекторно-	Сточные	Всего	Водо	отведение и у	гилизация
Государство	дренажные воды	воды промкомбыта	формируется возвратных вод	В реки	В природные понижения	Повторное использование для орошения
Казахстан	1,6	,19	1,79	0,84	0,7	0,25
Кыргызстан	1,7	,22	1,92	1,85	0	0,07
Таджикистан	4,5	,55	4,6	4,25	0	0,35
Туркменистан	3,8	,25	4,5	0,91	3,1	0,04
Узбекистан	18,4	1,69	20,09	8,92	7,07	4,1
всего в бассейне Аральского моря	29,55	29	32,45	16,77	10,87	4,81
в том числе бассейн Сырдарьи	11,95	1,44	13,39	9,16	1,54	2,69
Бассейн Амударьи	17,6	1,46	19,06	7,61	9,33	2,12

Коллекторно-дренажные воды, являясь сопутствующим побочным продуктом орошаемого земледелия, могут служить и дополнительным резервом для использования в качестве источника орошения солеустойчивых сельхозкультур, в качестве водных объектов для поддержания биологического разнообразия, рыбного промысла и охоты, в рекреационных целях для отдыха людей и в других сельскохозяйственных целях. Однако их загрязненность остатками минеральных удобрений и ядохимикатов, используемых в сельском хозяйстве, существенно ограничивает возможность повторного хозяйственного использования коллекторно-дренажных вод. Сбор, транспортировка и отвод дренажных вод сопряжено с огромными затратами материальных средств.

Формирование огромного объема коллекторно-дренажного стока в современных условиях в основном связано с низкой эффективностью используемых способов и техники полива, технологий орошения сельскохозяйственных культур. Согласно научным рекомендациям при высокотехнологичном ведении орошаемого земледелия объем формируемого дренажного стока не должен превышать 10% объема подаваемой воды на поля орошения. Однако, из-за огромных непроизводительных потерь оросительной воды, доля КДВ от объема стока подаваемого на орошение составляет 20-55%. Если учесть, что не вся орошаемая территория в регионе обеспечена коллекторно-дренажной сетью и в особенности в горных областях, где в основном функционирует так называемый «сухой дренаж», то становится очевидными факты огромных затрат воды на каждый орошаемый гектар и значительные удельные величины дренажного стока. Это попросту нерациональное использование речных вод и ее перевод из хорошего качества в разряд антропогенно загрязненных вод.

Ниже приводится доля КДС и объем стока на орошение по странам региона.

Государство	Объем водных ресурсов используемых на орошение, млн.куб.м	Формируется КДВ от орошения, млн.куб.м	Доля КДВ от объема стока на орошение, %
Казахстан	7959	1600	20,1
Кыргызстан	3100	1700	54,8
Таджикистан	10150	4050	39,9
Туркменистан	16788	3800	22,6
Узбекистан	56660	18400	32,5
всего в бассейне Аральского	94657	29550	31,2
моря			
в том числе бассейн	35089	11950	34,1
Сырдарьи			
Бассейн Амударьи	59568	17600	29,5

Поэтому при разработке мероприятий по устойчивому управлению дренажными стоками в первую очередь наши усилия должны быть направлены на водосбережение и повсеместное сокращение непроизводительных потерь оросительной воды и соответственно удельного дренажного стока с орошаемого гектара и в целом сокращению объема КДВ.

В начальные периоды интенсивного расширения площади орошаемых земель и массового строительства коллекторно-дренажных систем получило широкое распространение отвод дренажных вод в стволы рек в целях повторного их использования. Такое повторно «прокатное» использование водных ресурсов, предусмотренное в прежних «схемах» и проектах комплексного использования водных ресурсов обосновывалось необходимость увеличения оросительной способности речных стоков (располагаемых водных ресурсов). В схемах комплексного использования водных ресурсов бассейна Аральского моря, составленных проектными институтами, за счет повторного использования возвратных вод прогнозировалась возможность повышения оросительной способности речных стоков до 15-20%.

Однако развитие орошаемого земледелия в Центральной Азии за последние десятилетия показало, что «повторно-прокатное использование располагаемых водных ресурсов через ствол рек допустимо только до определенного предела возврата КДВ, за чертой которого

оно наносит большой ущерб не только питьевому водоснабжению, но и другим отраслям народного хозяйства, и особенно развитию агропромышленного комплекса, приводя к ухудшению качества речных вод. В верхних течениях минерализация воды увеличилась на 0,2-0,3 г/л, в средних течениях на 0,5-0,7 г/л, а в нижних на 1,0-1,5 г/л. Повышение минерализации воды приводит к снижению урожайности с/х культур. Рост минерализации на каждые 0,1 г/л по сравнению с исходным значением наносит ущерб продуктивности от 134 до 147 долларов США на 1га в среднем и нижнем течении бассейна Амударьи, а в среднем течении бассейна Сырдарьи этот ущерб составляет от 7 до 150 долларов США на 1 га.

Влияние дренажных сбросов в целях повторно-прокатного использования водных ресурсов на качество речной воды можно рассмотреть на примере реки Амударья, где в период с 1960-1990 годы получило наибольшее развитее строительство КДС и отвод дренажных вод в стволы рек и увеличение минерализации воды по течению реки демонстрирует увеличение загрязненности.

Рост среднегодовой минерализации воды Амударьи (г/л) по В.Духвному.

Период	Атамурад (Керки)	Ильчик	Бирата (Даргантата)
1960-1965	0,56	0,62	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1966-1970	0,56	0,61	
1971-1975	0,67	0,7	
1976-1980	0,73	0,73	0,88
1981-1985	0,79	0,91	1,15
1986-1990	0,73		1,05

Отрицательное влияние на качество воды реки Амударья дренажных сбросов в среднем и нижнем течении реки подтверждается результатами наших обследований, осуществленных в июне 2004 года.

Дата отбора проб	Место отбора проб	Среднесуточный расход воды реки и дренажных коллекторов в местах отбора проб воды, куб.м/с	Общая минерализации по сухому остатку
02.06	Поселок Мукры, 1102км Амударьи от Аральского моря	2300	600
03.06	г.Атамурад, 1045км	1880	633
04.06	Район Головного питания канала Карабекаул, 950км	1840	633
04.06	Участок Япач 5км выше впадения Южного дренажного коллектора с территории РУз 865км.	1835	666
04.06	Устье южного коллектора, 860км	30,0	5700
04.06	10км ниже впадения южного коллектора, 855км	1860	933
07.06	г.Туркменабад. 840км	1850	733
07.06	г.Сеиди	184	736
07.06	Устье Головного левобережного коллектора, 724км	23,4	1400
07.06	Устье Фарабского самотечного коллектора, 746км	3,0	1766

07.06	Поселок Кабаклы, ниже впадения Маханкульского коллектора с территории РУз, 665км	1835	1433
07.06	Поселок Бирата, 611км	1830	800

Как видно из таблицы, минерализация воды от створа Мукры до створа Бирата увеличилась на 200 мг/куб дм при расходе воды в реке около 1850 куб.м/с, что является существенной величиной. После сброса дренажных вод, в особенности Южного и Маханкульского коллекторов, которые имеют большие расходы дренажных вод с повышенной минерализацией, качество воды реки Амударья резко ухудшается и при этом даже на расстоянии 10км не происходит полное смешивание речной воды с дренажной.

Указанное положение доказывает, что повторно-прокатное использование водных ресурсов через стволы рек далее неприемлемо в существующих объемах и поэтому необходимо искать другие подходы управления и утилизации коллекторно-дренажных вод. Обеспечивающих их продуктивное использование без нанесения серьезного ущерба другим водопотребителям и окружающей среде.

Одним из эффективных способов снижения дренажного стока и затрат по сбору и транспортировке дренажных вод является использование слабоминерализованных грунтовых вод в местах их формирования для увлажнения корненеобитаемого горизонта сельхозкультур путем обратного регулирования водного режима почв или субирригации. Под данным научно-исследовательских работ при расположении слабоминерализованных грунтовых вод (1-4 г/л) на глубине 1,0м можно удовлетворить потребность хлопчатника в воде на 30-70%, на глубине 2,0 м на 15-30% и на 3,0м на 5-10%.

Таким образом. Путем искусственного поддержания грунтовых вод на глубине 1,2-1,5м можно сэкономить значительные объемы оросительной воды и снизить затраты по отводу дренажных вод.

Искусственное поддержание уровня грунтовых вод достигается шлюзованием дренажных коллекторов; на открытых коллекторах - перегораживающими сооружениями; на закрытой сети – запорно-регулирующими устройствами.

Так например на 700 тыс.га орошаемой территории Туркменистана распространены грунтовые воды с минерализацией менее 3,0 г/л. Внедрением, даже на половине этой площади метода субирриации можно сэкономить 600млн.куб.м речной воды, соответственно сократить негативное воздействие дренажных сбросов на окружающую территорию.

В настоящее время, кроме осуществления организационных и технических мер по улучшению режима водопотребления в орошаемом земледелии и с тем, чтобы максимально сократить объемы образуемых возвратных сбросно-дренажных вод, могут быть предложены следующие варианты управления и размещения, формируемых в бассейне Аральского моря дренажно-сбросных вод:

- Использование КДВ в местах их формирования на полив солеустойчивых с/х культур, в том числе путем смешивания с речной водой;
- Использования КДВ в зоне магистральных отводящих трактов для орошения солеустойчивых с/х культур на легких пустнынно-песчаных и других почв;
- Организованный отвод с культурной зоны дренажно-сбросных вод в искусственные накопители вод и использование этих водоемов для разведения рыбы, отдыха и в спортивных целях; здесь также может быть предусмотрен отвод дренажно-сбросных вод в озера дельты рек Амударья и Сырдарья для создания обводненных зон и сохранения биологической продуктивности и экологического равновесия;
- В перспективе может быть рассмотрен вариант использования дренажно-сбросных вод путем их опреснения на различные нужды в том числе для орошения сельхозкультур.

Практика маловодных лет показывает, что использование слабоминерализованных дренажных вод для орошения сельхозкультур, в некоторых случаях путем смешивания с речной водой не снижает урожайность с/х культур, но и дает некоторую прибавку урожая, но и самое главное способствует существенному снижению уровня грунтовых вод и улучшению мелиоративного сосотояния орошаемых земель. Вопрос использования слабоминерализованных вод для орошения солеустойчивых с/х культур на легких по механическому составу почвогрунтах, изучается достаточно долго и по нему имеются большое количество научно-обоснованных рекомендаций. И поэтому вовлечение коллекторно-дренажных вод в единую систему водообеспечения с\х культур является не только вопросом покрытия дефицита водных ресурсов, но и надежным методом вторичного использования возвратных вод, устранения отрицательного воздействия на окружающую среду.

Как было отмечено выше, одним из распространенных способов отвода и размещения коллекторно-дренажных вод явился их организованный отвод и накопление в понижениях рельефа. Необходимо отметить, что небольшие накопления – озера дренажных вод на малых локальных коллекторно-дренажных системах как обычно бывают с небольшой глубиной воды и с относительно значительной водной поверхностью, в связи с чем здесь идет интенсивное испарение воды, в результате чего вода в этих водоемах становится водная и пустынная растительность, соленой. деградирует биологическая продуктивность. Иногда в месте этого понижения с обильной дикорастущей растительностью возникает солончак, лишенный растительности и с горько-соленым озером посреди этого понижения. И поэтому. Когда рассматривается размещения коллекторно-дренажного стока в природных понижениях необходимо выбрать оптимальные размеры этого накопителя, хотя биологическая продуктивность в этих антропогенных озер - накопителей из года в год будет снижаться, так как из года в год будет расти в них соленость воды.

В качестве крупномасштабного примера сбора и размещения больших объемов КДВ можно привести проект создания Туркменсткого Озера Золотого века в Каракумах. На современном этапе общий объем КДВ формирующийся на орошаемых землях Туркменистана оценивается в 6,0 куб км, что составляет 20-25% объема водозабора из источников на эти нужды и соответствует современному уровню сельскохозяйственного производства. С учетом КДВ поступающих с территории Узбекистана. Общий объем КДВ транспортирующихся на территории Туркменистана составляет более 11 куб.км.

К настоящему времени в велаятах Туркменистана сложись самостоятельные системы по отводу КДВ за пределы культурной зоны. Часть КДВ сбрасывались в реки Амударья и Мургаб, а основная часть отводилась в межбарханные понижения пустыни Каракумы, затапливая на своем пути пустынные пастбища, выводя из строя колодцы. Водосборные такыры.

Особо тяжелое положение сложилось в Дашогузском велаяте. Где более 65% годового стока КДВ, транспортируемого транзитом по системам межгосударственных дренажных коллекторов в Сарыкамышское озеро, формируется на территории соседних велаятов республики Узбекистан. В промывной и предпосевной периоды года происходит резкое увеличение расходов КДВ Озерного и Дарьялыкского дренажных коллекторов, превышающих проектные параметры в 1,2-2 раза. Пропуск сверхпроектных расходов в особенности в низовьях Озерного и Дарьялыкского коллекторов приводит к интенсивному размыву русел, разрушению существующих мостов, газопроводов, линии электропередач и связи, водопропускных сооружений, подтоплению существующей системы дренажа, ухудшению мелиоративного состояния орошаемых земель и пастбищ, причиняя при этом значительный экологический и экономический ущерб.

В целях устранения причин указанных деградационных процессов и в целях выполнения обязательств Туркменистана по прекращению сброса минерализованных дренажных вод в Амударью с территории Туркменистана было принято решение о строительстве Туркменского озера Золотого века.

В качестве природной емкости Туркменского озера было выбрано понижение Карашор. Его протяженность около 100 км, а ширина 15-20км, общая емкость водохранилища оценивается в 132куб.км.

Туркменское озеро должно принять дренажные воды по двум системам дренажных трактов – Дашогузскому вводу (северная) и Транстуркменскому коллектору (южная).

Северная система отведет дренажные воды с орошаемых земель Дашогузског велаята и стоки дренажных вод с поступающих с территории земель Республики Узбекистан по Озерному и дарьялыкскому коллекторам.

Южная система полностью будет отводить дренажные воды с орошаемых земель Лебабского, Марыйского, Ахалского велаятов. Система будет отводить дренажные воды Правобережья и Левобережья среднего течения Амударьи, примет в себя дренажные воды Джарского, Гласного Мургабского, Цнтрально-Тедженского коллекторов, а также коллектоно-дренажные воды.

Максимальный расход Дашогузского ввода складывается из двух расходов: отводимых из Дарьялыка 60куб.м/с и Озерного – 150куб.м/с; всего 210куб.м/с.

Транстуркменский коллектор пересе5чет территории Туркменистана в субмеридианальном направлении от Дейнау на востоке до понижения Карашор на западе.

Общая длина этого коллектора — 720км, расход в истоке составит 123 куб.м/с, где 58куб.м/с — расход КДВ правого берега реки Амударья в пределах Лебапского велаята. Максимальный расчетный расход составит 240куб.м/с.

Реализация данного проекта позволит решать рад важнейших экономических, экологических и социальных задач, преобразит пустыню. В частности навсегда исчезнут многочисленные локальные мертвые озера с горько-соленой водой, образованные в результате беспорядочного сброса дренажных вод в понижения рельефа в пустыне. Улучшится организованный отвод коллекторно-дренажных вод с орошаемых территорий, тем самым решаться проблемы связанные с заболачиванием и засолением земель. В зоне магистральных коллекторов и главных вводов, общей протяженностью более 1,5 тыс.км образуются обводненные зоны на которых будут бурно развиваться пустынная древесно-кустарниковая и травянистая растительность, вследствие чего значительно улучшится кормовая продуктивность пастбищ. Также станет возможным в зоне коллекторов и вводов выращивание солеустойчивых сельскохозяйственных культур для нужд местного населения.

За последние 30-35 лет научно-исследовательскими учреждениями Туркменистана изучены различные аспекты использования КДВ как дополнительных источников орошения сельскохозяйственных культур (хлопчатник, рис, кукуруза, сорго, просо и др.). Применение КДВ с минерализацией 3-4 г/л позволило в различных районах страны получать урожай сельскохозяйственных культур зеленой массы в следующих пределах: кукурузы — 210-457ц/га, джугары — 197-1700, суданской травы — 207-707, подсолнечника — 793ц/га, риса (зерно) — 17-25ц/га. Указанные урожаи всего лишь на 5-10% ниже урожаев, полученных при поливах речной водой.

Кроме того, при использовании КДВ (2-5г/л) для орошения естественной растительности (илик, чопан-телпек, верблюжья колючка, шор-чаир и др.) на пастбищах урожайность ее сухой биомассы повысилась более чем вдвое 9с 31 до 63ц/га).

В магистральных коллекторах и в самом Туркменском озере будет развиваться рыбоводство, будут созданы условия для остановки и отдыха перелетных птиц.

В последние годы рассматривается ряд перспективных методов очистки коллекторнодренажных и сточных вод. Среди них наибольший интерес представляет изучение способности высших водных растений поглощать из воды органические вещества, нефтепродукты, задерживать взвеси, извлекать биогенные элементы, тяжелые металлы,

фенолы, пестициды и радиоактивные вещества. Поэтому все чаще используются такие заросли высших водных растений в качестве биофильтров в отстойниках и прудах, каналах и искусственно созданные посадки стали называть «биоплато».

Применение метода «биоплато» для очистки загрязненных коллекторно-дренажных и сточных вод является наиболее экологически чистым и экономически дешевым по сравнению с другими методами. Именно поэтому, в разработке технико-экономического обоснования проекта Туркменского озера этому методу отдается предпочтение и во многих «рукавах» объединительного коллектора предусмотрена система «биоплато».

Необходимо отметить и такой положительный аспект создания системы коллекторов и организованный отвод дренажно-сбросных вод. Как известно из-за паводкового характера гидрологического режима рек Мургаб, Теджен и мелких речек северо-восточного склона Копетдага и отсутствия на них достаточных объемов регулирующих емкостей (водохранилищ) иногда на этих водоисточниках случаются катастрофические паводки, с беспорядочным сбросом паводковых вод на пустынную территорию. Организованный отвод этих паводковых вод, которые обладают минимальным солесодержанием, по системам коллекторов в Туркменское озеро окажет положительное влияние на качество воды в коллекторах и в самом озере, флору и фауну окружающей территории. Биологическую продуктивность водотоков и озера. И самое главное эти сбросные воды не будут бесполезно затрачены на испарение и фильтрацию, а будут направлены в озеро для аккумуляции и дальнейшего вторичного использования.

Туркменистан находится в центре Евроазиатского континента и благодаря своему географическому положению и климатическим особенностям территория нашей страны имеет огромной значение для мигрирующих видов птиц, пролетный путь которых простирается от арктических берегов Западной и Центральной Сибири до Ирана, Афганистана, Индии и Африки. В пределах Туркменистана у многих видов перекрываются ареалы зимовок.

Строительство Туркменского озера – крупнейшего водного сооружения площадью 3460кв.км в северо-западной части Каракумов с главным дренажным коллектором, длиной в 720км. Создаст новые благоприятные экологические и кормовые условия для перелетных птиц в районе с ныне ограниченным водоснабжением. Обводнение старого русла Западного Узбоя и пересечение песчаной пустыни Центральных и Восточных Каракумов новым коллектоным каналом послужат хорошим ориентиром для перелетных птиц и способствуют появлению новых мест гнездовий и зимовок таких водно-болотных птиц как гуси, лысухи, бакланы, кулики и др. Являясь объектом любительской охоты ти пернатые составят огромный запас ценного продукта дичи. Со строительством Туркменского Озера откроется крупнейшее в регионе новое место зимовок водоплавающих и околоводных птиц. Кроме того, обводнение Центральной части Каракумов благоприятно скажет ся на состоянии некоторых копытных, в частности джейрана, устюртского горного барана, кабана, а также выдры, нутрии, ондатры и др. и будет способствовать сохранению и обогащению биоразнообразия нашей страны.

Полная реализация проекта позволит:

- Собрать в единый поток все сбросы КДВ с орошаемых земель Дашогузского, Лебапского, Марыйского, Ахалского и Балканского велаятов Туркменистана и отвести их в Туркменское озеро;
- Возвратить в сельскохозяйственный оборот более 4060кв.км земель отгонных пастищь ныне затапливаемых;
- Снизить на два метра уровень воды в Озерном и на 1,2 м в Дарьялыкском коллеторах, что обеспечит нормальный режим работы дренажных систем Дашогузского велаята;
- Использовать емкости Карашор и Зенгибаба в целях дальнейшего развития рыбного промысла на территории Туркменистана, с годовым производством товарной рыбы до 30 тыс.тонн;
- Улучшить мелиоратиное состояние земель на площади более 2240,0 тыс.га;

• Обеспечить работой до 50 тыс местных рабочих и специалистов, что в значительной степени решит проблему занятости населения во всех велаятах страны.

Создание Туркменского Озера – задача для Туркменистана более чем актуальная. Оно не только улучшит экологическую обстановку в целом по стране и в Туркменском Приаралье в частности, улучшить мелиоративное состояние пастбищ, повысит урожайность сельхозкультур, обеспечит дополнительные мощности для развития рыбоводства.