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Abstract

This study examines the effects of climate and weather
shocks on Afghanistan’s agricultural economy, with an
empbhasis on food security, prices, and wages. By utilizing
a dynamical model and a unique data set that includes
monthly global and local food prices, agricultural wages,
unofficial exchange rates, and local climate data, the
research provides econometric estimates of the impacts of
droughts and floods. The findings reveal that both flooding
and drought significantly increase food insecurity, directly
and indirectly. Directly, these climatic shocks are linked to
heightened risks of food insecurity in the following months,

even when controlling for price and wage fluctuations. Indi-
rectly, droughts and floods drive up food prices and depress

agricultural wages, further exacerbating food insecurity.
The study suggests that enhancing climate resilience in the

agriculture sector could mitigate these risks, stabilize local

food prices and wages, and strengthen food security and

the broader agricultural economy. The results also show
that price data effectively capture food security shocks from

various non-economic sources, and can serve as a versatile

monitoring tool in situations where detailed data on food

security are unavailable.
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1. Introduction

Afghanistan is at a critical juncture, with escalating food insecurity demanding attention as the
country faces multiple crises threatening livelihoods and development. According to recent reports,
hunger levels continue to rise, and progress toward the Sustainable Development Goals (SDGs) has
stalled. In 2022, an estimated 12.6 million people—30.6 percent of the population—experienced
severe food insecurity, according to the United Nations Food and Agriculture Organization (FAO). Of
these, 2.9 million were at emergency levels (classified as Phase 4 or above by the Integrated Food
Security Phase Classification, or IPC), on the brink of starvation due to economic crises and droughts,
as highlighted in the latest IPC analysis (March-April 2024). The World Bank’s World Food Security
Outlook (Andrée 2022; 2023c) projects that Afghanistan will not achieve Sustainable Development
Goal 2 (zero hunger), with severe food insecurity persisting beyond 2030.

The choice between investing in resilience or responding with humanitarian aid represents a
dilemma in the development and humanitarian nexus. Investing in resilience aims to build long-term
sustainability and reduce vulnerability, while aid provides immediate relief in crisis times. Striking
the right balance is essential, as focusing solely on aid can perpetuate dependency, while
underinvesting in resilience leaves communities exposed to future shocks. Important in this tradeoff
are investment opportunities, the magnitude of preventable agricultural losses, and the role of locally
produced food for food and nutrition security.

Global costs associated with natural disasters and climate extremes are rising. Newman and Noy
(2023) quantify the global costs of extreme weather events attributable to climate change,
highlighting economic burdens, particularly human loss of life. Addressing climate shocks can be an
essential part of resilience strategies, as the agriculture sector offers opportunities for proactive
adaptation and mitigation measures to reduce vulnerability (Diogo et al, 2017). Challinor et al.
(2014) conducted a meta-analysis of 1,700 simulations to evaluate yield impacts of climate change
and adaptation globally. Across different climate scenarios and adaptation strategies, crop-level
adaptations increased simulated yields by an average of 7%-15%, a figure that aligns with the
prevalence of severe food insecurity worldwide.

The potential for agricultural adaptation measures to strengthen food security depends on country
contexts. Evidence suggests that action is particularly important in low-income settings. Vermeulen
et al. (2012) highlight the complex, geographical nature of climate impacts on food systems and note
that they particularly affect low-income producers and consumers. Andrée et al. (2019) assess the
relationship between economic development and environmental burdens in 95 countries and show
that early-stage development, associated with the greatest reduction in extreme poverty and the
fastest improvements in living standards, is also linked to the highest pressure on natural resources.
Eroding these resources early on can create long-term challenges to food security if local livelihoods
depend on them for consumption. These contextual impacts of climate shocks call for in-depth,
country-specific analysis of the climate-food security relationship.

Afghanistan faces challenges in achieving food security due to recurring climate shocks and socio-
economic instability. Severe climatic events such as droughts and floods have impacted agricultural
productivity and food availability. While existing studies and humanitarian reports from the World
Bank and IPC document these challenges, questions remain about whether climate-induced food



security shocks are sporadic or reflect deeper structural vulnerabilities, and how building
agricultural resilience could provide a solution to chronic food insecurity.

This study addresses these gaps by investigating the impacts of climatic shocks on food security over
a thirteen-year period in Afghanistan. Using a vector-autoregressive (VAR) model, we analyze the
direct and indirect effects of weather anomalies on food insecurity, food prices, and agricultural
wages. By understanding these dynamics, we provide evidence on how climatic shocks have
impacted food security. Specifically, the model uses a logistic regression with two specifications to
measure different levels of food insecurity: IPC levels 2 or greater (food stress) and 3 or greater (food
crisis). The model evaluates the probability of these outcomes using drought and flood anomalies as
primary variables, along with control variables for time-invariant vulnerabilities and economic
factors including food prices and agricultural wages. In addition to the logit, food prices and
agricultural wages are modeled using linear specifications. All three regressions have the same
covariate structure and incorporate up to 12 time lags to account for delayed climate effects on food
insecurity. The VAR setup allows analysis of both direct and indirect effects, showing how droughts
impact food security directly and through price and wage effects. The model can predict at-risk
populations using weighted probabilities.

Our analysis contributes to existing literature in two main ways. First, the results highlight the
significant impact of climatic shocks, particularly floods, on food insecurity. A one-in-six-year flood
event increases the likelihood of food stress by 23.4 percentage points and food crisis by 5.9
percentage points over 12 months. When combined with positive NDVI (Normalized Difference
Vegetation Index) anomalies during the spring planting season, indicating lush natural vegetation
from excessive rainfall, the impact is even greater—raising the probability of food stress by 51.2
percentage points and food crisis by 16.0 percentage points. These findings underscore the
importance of resilience-building measures in flood-prone regions to mitigate food security risks.

Climatic shocks also influence food prices and wages, affecting food security. For example, floods
increase food prices by 3.40% annually, while agricultural wages rise by 1.80%. These wage
increases are insufficient to offset higher food prices, resulting in a net negative purchasing power
shock and worsening food insecurity. Droughts similarly induce purchasing power shocks. In our
model, a one-in-six-year drought leads to a 5.17% annualized increase in agricultural wages but a
6.36% increase in food prices. The model shows that climatic shocks impact food security both
directly, through agricultural losses and reduced food availability, and indirectly, through price and
wage dynamics. This interconnectedness highlights the need for comprehensive climate adaptation
strategies that address food production and market stability to improve food security outcomes.

This paper also contributes to the literature on food security modeling. Our model's predictive
accuracy—correctly classifying 69.14% of food stress cases and 87.89% of food crisis cases—
provides a foundation for developing early warning systems. These systems are crucial for
anticipatory humanitarian actions, allowing policy makers to monitor risks in real time and take
preemptive measures before crises unfold. This work builds on research incorporating climate
simulations and satellite data to account for weather impacts on crop yields, food supply chains, and
food security (Lobell et al., 2008; Cartuyvels et al., 2023) and connects to studies using stochastic
modeling (Wang et al., 2020; 2022), threshold modeling (Penson et al., 2024), and machine learning
methods such as Random Forest (Andrée et al.,, 2020) and Bayesian networks (Semakula et al., 2024)
for predicting food security outcomes. Our model's ability to produce accurate, population-weighted
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exposure probabilities at various food insecurity levels supports these types of indicators and
methods that monitor food security transparently and frequently in countries like Afghanistan.

The paper is structured as follows: Section 2 discusses the country context and related literature.
Section 3 introduces the data. Section 4 presents the modeling framework. Section 5 outlines key
findings. Section 6 discusses implications, and Section 7 concludes.

2. Background and Literature Review
2.1. Food Security Challenges in Afghanistan

Afghanistan faces challenges in achieving food security due to its terrain, varied climatic conditions,
and socio-economic vulnerabilities. Over the past decades, the country has experienced a series of
climatic and weather shocks—including prolonged droughts, erratic rainfall, and flooding—that have
impacted agricultural productivity and food availability. These disruptions have been compounded
by poverty, limited market access, and ongoing conflict, creating a web of factors contributing to food
insecurity and economic instability.

Research indicates that both droughts and floods are major drivers of food insecurity in Afghanistan.
The World Bank (2019) reported that approximately 45% of the Afghan population was moderately
food insecure in 2016, a figure that has worsened in subsequent years, now exceeding 80% (IPC,
2023), due to climatic events and the economic disruption caused by the political events of 2021. In
2018, a severe drought further intensified food insecurity, particularly in rural areas dependent on
agriculture for livelihoods. This event reduced cereal yields, pushing many households to crisis levels
of food insecurity and triggering large-scale humanitarian interventions. Oskorouchi et al. (2021)
and Yolchi et al. (2024), using cross-sectional surveys, show that flooding also has significant
negative effects on food security. Additionally, Omerkhil et al. (2020) highlight that smallholder
farmers are especially vulnerable to climate change, with those in hilly regions at higher risk than
those in plains, and both groups showing low adaptive capacity.

Further studies point to the increasing severity and frequency of droughts in Afghanistan, predicting
more severe droughts in the future (Qutbudin et al., 2019). Khalily (2022) notes declining yields for
crops such as wheat, rice, and corn due to intensified droughts linked to climate change. Jawid and
Khadjavi (2019) emphasize the lack of adaptation support for Afghan farmers, while Ptivara and
Privarova (2019) highlight the compounding effects of climate change on the country's
environmental and socio-economic landscape, increasing vulnerability to displacement, conflicts,
and food insecurity.

While the literature underscores Afghanistan’s vulnerability to climate-induced food insecurity,
questions remain about whether these food security shocks are sporadic or indicative of deeper
structural vulnerabilities. It is uncertain how building agricultural resilience could provide a
sustainable, long-term solution to chronic food insecurity.

2.2. Direct and Indirect Effects of Climate Change on Food Security

Climate change threatens progress toward eradicating hunger through both direct agricultural
productivity shocks and indirect socio-economic effects. Direct shocks limit crop productivity and



food availability, impacting food systems and nutrition (Arreyndip, 2021; Mirzabaev et al., 2023;
Wheeler & Von Braun, 2013).

Indirectly, climatic shocks can harm the overall economy, leading to secondary impacts on food
security and extreme poverty. Climate-induced shocks pose challenges to economic stability. Cevik
and Jalles (2023) show that climate shocks have varying effects on inflation and GDP growth, with
differences across income groups and economic conditions. Khurshid et al. (2022) and Acevedo et al.
(2020) attribute negative long-term GDP growth impacts to climate shocks, which
disproportionately affect low-income countries. Droughts, in particular, add inflationary pressures
by increasing food prices (Kabundi et al,, 2022). Erdogan et al. (2024) emphasize that extreme
weather events exacerbated by climate change reduce crop yields, leading to product shortages and
higher food prices. Temperature variations, especially in hot climates, reduce investment, suppress
labor productivity, and slow agricultural output, contributing to higher food prices (Acevedo et al,,
2020). Mukherjee and Ouattara (2021) highlight the persistent inflationary effects of temperature
shocks, which challenge the effectiveness of monetary and fiscal policy over the long term. Coumou
and Rahmstorf (2012), Coumou and Robinson (2013) and Gbadegesin (2020) point to the increasing
frequency of extreme heatwaves and precipitation events due to warming, advocating for urgent
adaptation measures. Blekking et al. (2022) report that climate variability in urban Sub-Saharan
Africa leads to local food price increases during droughts and price hikes across urban retailers as
climate impacts transmit through supply chains.

These climate-induced economic shocks can lead to further indirect and potentially long-lasting
consequences for food security and nutrition outcomes. The literature indicates that these outcomes
disproportionately affect low-income countries and vulnerable groups such as women and children.
Gatti etal. (2023), for example, highlight the long-term harmful effects of short-lived food price spikes
on food security and health in the Middle East and North Africa, emphasizing the disproportionate
impact on vulnerable populations.

2.3 Application of VAR Models in Dynamical Climate Impact Studies

Statistical models using historical data to calibrate regression equations against future responses can
process time series data from a single location (univariate time series methods) or multiple (panel
methods extending across time and space). Univariate time-series models capture behavior specific
to a given area, while panel methods assume common parameter values for all locations,
differentiating between locations using cross-sectional variables that vary spatially. Panel and
univariate time series methods have been used to estimate the impacts of climatic factors (e.g.,
temperature, precipitation, extreme weather events) on agricultural output and food security (Lobell
& Burke, 2010) but are limited by their focus on unidirectional causal pathways.

VAR models can handle dynamic dependencies among multiple univariate time series. These
methods can be extended to model dynamic relationships in panel data over time. For example,
studies by Andrée (2020) and Gheasi et al. (2023) applied VAR frameworks to spatial time series data
to explore macroeconomic shocks on regional economies, while Wang et al. (2020; 2022) used panel
VAR approaches to assess food security responses to climatic events.

In this study, we adopt a VAR approach to analyze how climate shocks affect food security and
propagate through domestic food prices and wages. The VAR setup estimates the direct and indirect



effects of climatic shocks on food security by incorporating variables such as food prices and
agricultural wages. This approach allows the model to capture how droughts and floods impact food
security directly and through economic channels, providing a comprehensive understanding for
policy. We examine three main pathways: (1) the direct impact of weather and climate shocks on
food insecurity, (2) the relationship between these shocks and domestic food prices, and (3) the effect
on agricultural wages. Additionally, we assess the impacts of inflation and wage changes on food
security outcomes, highlighting the indirect effects of climatic shocks through the destabilization of
the agricultural economy.

3. Data

The variables used in the study cover climatic, economic, and structural factors relevant for
understanding food security outcomes, agricultural wages, and food prices. Table 1 provides an
overview. The following sections discuss the target variables and covariates in more detail.

Table 1: summary statistics of the data

The table presents summary statistics for the variables used in the analysis. The values are based on the original units and
summarize key indicators across the sample. For each variable, the table shows the mean, standard deviation (Std),
minimum (Min), and maximum (Max) values, providing insights into the variability and range of the data.

Variables Mean Std Min Max Unit
IPC Rating 1.754 0.703 1.000 4.000 IPC phase
Rainfall 10.788 11.919 0.000 116.158 mm/m
NDVI 0.167 0.096 -0.049 0.756 Index
Agricultural Wages (Qualified Labor) 670.694 87.250 292.503 1034.540  AFN
Food Prices 39.839 9.452 20.858 84.432 AFN
Fuel Prices 51.319 13.234 27.125 119.068 AFN
Global Food Price 672.849 139.588 494.273 1121.430 USD
Exchange Rate 66.307 13.864 45.088 100.088 AFN/USD
Cropland 7.973 8.460 0.030 33.186 Percentage
Terrain Ruggedness 349552.026 198149.660 26754.030 776683.500 Index
Population Density 114.822 173.223 4.239 1243.665 People/m2
Pastureland 47.326 17.770 1.741 82.399 Percentage

In Table 1, the IPC rating reflects the phases of food insecurity, from minimal (IPC phase 1) to
humanitarian emergency (IPC phase 4). Climatic variables such as rainfall and NDVI capture
environmental conditions, with rainfall measured in millimeters per month and NDVI indicating
vegetation health on a scale from -1 (water) to 1 (dense, healthy vegetation). Economic variables
include agricultural wages and food prices along with fuel prices, measured in Afghanis (AFN). The
global food price index, in USD, indicates international food price trends. The exchange rate reflects
the value of the Afghan afghani relative to the US dollar.

Structural variables such as cropland, terrain ruggedness, population density, and pastureland
provide insights into the geographic and demographic context. Cropland and pastureland are
expressed as percentages of total land area, while terrain ruggedness is an index indicating the



difficulty of the terrain. Population density measures the number of people per square kilometer,
capturing human activity concentration in the region.

3.1 Target Variable: Food Insecurity, Food Prices, and Agricultural Wages

We obtained historical data on food insecurity from periodic assessments conducted by the Famine
Early Warning Systems Network (FEWS NET) across 40 districts in Afghanistan from 2009 to 2023.
FEWS NET aligns with the IPC system to assess and standardize acute food insecurity outcomes into
five phases: Minimal (Phase 1), Stressed (Phase 2), Crisis (Phase 3), Emergency (Phase 4), and
Famine (Phase 5). Since 2012, FEWS NET data identify areas where humanitarian assistance reduced
the IPC phase by one level. Following the methodology of Andrée et al. (2020) and Penson et al.
(2024), we derived IPC phases adjusted for aid effects by combining IPC phase data with a binary
indicator representing the presence of humanitarian aid, focusing on inherent food insecurity rather
than the impact of humanitarian response.

We then created two binary food insecurity outcomes: the first equals 1 when the adjusted IPC rating
is 2 or greater (food stress), and the second equals 1 when the IPC rating is 3 or greater (food crisis).
Figure 1 shows the resulting proportion of the population experiencing food stress (IPC = 2) and food
crisis (IPC 2 3) from July 2009 to November 2023. The population facing food stress fluctuated,
peaking above 1 million during several periods, particularly after 2015 while the incidence of food
crisis increased notably after 2015, indicating worsening food security conditions in recent years.

Figure 1: Proportion of Population with Integrated Food Security Classification>2 and >3

Figure 1 is a line plot depicting the proportion of the population in food insecurity over time. The plot includes two lines:
one for the proportion of the population experiencing food stress (IPC = 2), shown in blue, and another for the proportion
experiencing a food crisis (IPC = 3), shown in green. The figure shows significant fluctuations, with notable peaks in food
stress around 2011, 2015, and 2016, reaching more than 1 million individuals during certain periods. Similarly, food crisis
incidence, while generally lower, spiked particularly in 2016, 2017, and 2018. Note that the data follows a 4-month interval
and has been interpolated. No assessments were caried out between June 2021 and February 2023.
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To analyze the relationship between weather and climate shocks and economic variables, we used
domestic food prices and local agricultural wages as dependent variables. These data were obtained
from Andrée (2021b, 2023b), prepared using surveys from the World Food Programme following
the methods of Andrée (2021a) and Andrée and Pape (2023) (see also Adewopo et al. (2024)).

Figure 2 shows trends in average monthly domestic food prices and agricultural wages in
Afghanistan from 2009 to 2023. Domestic food prices rose steadily, peaking above 55 afghanis in
2022 after climbing from around 30 afghanis in 2016. In contrast, agricultural wages fell from around
1,300 afghanis in 2010 to below 700 afghanis by 2022, reflecting worsening economic conditions for
agricultural workers. The data indicate growing challenges with food affordability as wages have
fallen over a period during which prices rose sharply.

Figure 2: Average Monthly Agricultural Wages and Food Prices

Figure 2 is a comparative analysis of domestic food prices and agricultural wages in Afghanistan from 2009 to 2023. The
left subplot illustrates the trend in domestic food prices, showing a gradual increase over the years, with notable spikes in
2012 and a significant rise starting in 2020, peaking in 2022 before a slight decline. The right subplot depicts the trend in
agricultural wages, which declined sharply in 2011, followed by fluctuations and a gradual downward trend, stabilizing at
lower levels from 2017 on.
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3.2 Covariates
Climate Variable of Interest: Rainfall and NDVI

We used rainfall and NDVI data from the Humanitarian Data Exchange (HDX) as key climate
variables. Rainfall is crucial for crop growth, providing the moisture needed for germination and
development (Almouctar et al.,, 2024). Studies such as Hou et al. (2022) show the positive correlation
between rainfall and vegetation health, affecting water availability and soil moisture. The NDVI,
derived from satellite imagery, reflects vegetation density and health; higher values indicate better
crop growth and yields (Pei etal,, 2021). Mehmood et al. (2024) note the NDVI's sensitivity to climatic
conditions, highlighting its role as a proxy for ecosystem functioning and environmental health.

Figure 3 shows the trends in average monthly rainfall and NDVI from July 2009 to December 2023.
The rainfall data exhibit fluctuations with periodic peaks and troughs, indicating variability in water
availability. Notable spikes are seen in 2015 and 2016, with an overall downward trend in recent

8



years. The NDVI shows more consistent seasonal fluctuations, with peaks around 0.22 and troughs
around 0.12, suggesting regular growth cycles but no long-term improvement in vegetation health.

Figure 3: Average Monthly Rainfall and NDVI

These figures are a visual representation of country-average trends in rainfall and the NDVI from July 2009 to December
2023. The left subplot depicts monthly rainfall, characterized by significant fluctuations, with peaks occurring monthly,
indicating the seasonal nature of rainfall patterns. Notable spikes are observed in 2015 and 2016, with an overall downward
trend in recent years. The right subplot shows the NDVI, which measures vegetation health, displaying a consistent seasonal
pattern with peaks typically occurring mid-year, reflecting the cyclical growth phases of vegetation. The data are from the
Humanitarian Data Exchange. The bottom plots indicate the national averages of the corresponding z-score anomalies.
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Control Variables

In addition to our primary variables, we included control variables known to affect food security. We
collected fuel price data from Andrée (2023a) and global food prices from the World Bank Pink Sheet.
Changes in global food prices influence the cost of imported and exported food commodities, while
fuel price fluctuations impact transportation and production costs throughout the food supply chain,
affecting domestic food availability and prices.

We also included time-invariant variables such as population density, terrain ruggedness, cropland,
and pastureland, accessed from the Predicting Food Crises dataset (Andrée et al., 2020). These



factors influence agricultural productivity and market access, thereby affecting food security (Jawid
& Khadjavi, 2019).

Seasonality affects agricultural productivity and food security (Aweke et al., 2022; Tay et al,, 2023).
Harsh winter weather often decreases agricultural productivity, leading to food shortages. While
food availability generally increases during the summer, extreme heatwaves and droughts can
reduce crop yields. Spring is important for planting, with favorable weather boosting productivity,
whereas fall marks the harvest season, but unpredictable weather can impact crop quality and yield.
To account for seasonal variations, we included three seasonal dummy variables as additional
controls in our analysis.

3.3  Data Preparation

The rainfall and NDVI data were initially divided into 401 administrative codes and aggregated at the
administrative division level. Each month included three data points corresponding to the 1st, 11th,
and 21st days. For rainfall, we aggregated these data points using sum and mean operations to
calculate average and total rainfall per month. We then standardized the monthly rainfall values
using Z-scores within each market to create a rainfall anomaly variable, representing long-term
rainfall variability. This approach aligns with methodologies used by Ngoma et al. (2023) and Penson
et al. (2024) to capture deviations from normal rainfall patterns. A similar procedure was applied to
the NDVI data. We aggregated NDVI data to obtain average NDVI per month and calculated NDVI
anomalies by standardizing the average NDVI values as Z-scores within each administrative division.

To account for extreme weather events such as droughts and floods, we modeled anomalies
asymmetrically. Excessive rainfall increases flood risk, while rainfall shortages increase drought risk;
both conditions can exacerbate food insecurity (Coumou & Rahmstorf, 2012). We created two
dummy variables for anomaly types—one indicating positive anomalies (flood anomalies) and the
other indicating negative anomalies (drought anomalies). We then generated interaction terms by
multiplying these dummies with the anomaly variable, allowing us to separately assess the impacts
of floods and droughts.

Data on agricultural wages, exchange rates, domestic food prices, and fuel prices were organized
according to administrative levels and market names. These datasets included monthly open, close,
high, and low values, which we aggregated using mean operations to obtain typical monthly averages.
To capture the dynamic interrelations among these economic factors, we used their percentage
changes in our analysis.

Time-invariant variables such as population density, terrain ruggedness, cropland, and pastureland
were available up to 2020. Due to their static nature, we extended these variables to 2023 using
forward-filling techniques and applied logarithmic transformations to normalize their distributions.

4. Methods
4.1 Conceptual Model

To develop a model to investigate the influence of climate and weather shocks on domestic food
prices and local agricultural wages, we start with a general form of the K-variable VAR:
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Yt =c+ AYt—l + BXt—l + Et

(4)

where:

e Y, is a K X 1 vector of observations of the endogenous variables at time t, where K is the
number of endogenous variables.

e X, is aM x 1 vector of observations of the exogenous variables at time t, where M is the

number of exogenous variables.

cisa K X 1 vector of constants.

Ais a K X K matrix of coefficients capturing the influence of lagged endogenous variables.

B is a K X M matrix of coefficients for lagged exogenous variables.

& isa K X 1 vector of realized innovations at time t.

In this time-series model, ; should not be considered simply as regression residuals; rather, from a
data-generating perspective, they represent the sequence of exogenous innovations that drive Y;.
These innovations reflect shocks or unexpected changes that cause fluctuations in the endogenous
variables. Rather than viewing & as random noise, it can be interpreted as representing the
influences of unforeseen events—such as market disruptions, policy shifts, or environmental factors
(e.g., unexpected weather conditions)—that are not accounted for by the lagged endogenous or
observed exogenous variables. To better illustrate the model, we expand this matrix notation into a
system of K equations, focusing only on the endogenous part:

Yit =0 taiYie-1+a12Y2-1 1t o+ QxVr-1 T 1t
Yot = C2tapY1t-1 1T A2Yo—1 1T "+ Ao Vit-1 + E2t
Ykt =Cgtagi1Yit-1 1+ Ag2Y2e—1 t -+ AQgxVge—1 T €kt

6)

Each variable y; ; depends not only on its own lagged value y; ,_; but also on the lagged values of all
other variables y; ., for j # i. This structure enables the model to capture dynamic interactions
among variables, where changes in one variable can indirectly influence others over time through
feedback loops within the system. The VAR model serves as a tool to understand how shocks
propagate throughout the system over time, allowing for an analysis of the complex interplay
between climate variables, food prices, and wages, and their impact on food security. For example:

e A weather shock (entering through the residual &) affecting agricultural wages (y; ;) at time
t can influence food prices (¥;:4+,) in the next period through supply and demand
adjustments.

e This initial impact on food prices may further affect agricultural wages in subsequent periods
(t > 2), creating a chain of indirect effects that impact food security.

Traditionally, the individual components in equation (5) are univariate. However, Andrée (2020) and
Gheasi et al. (2023) demonstrate that this approach can be applied to spatial time series, where each
variable y; ¢, ¥+, ..., Yk ¢ 1S itself a vector time series consisting of subnational data that evolve over
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time. We generalize this idea further by noting that each equation is a generalized linear model (GLM)
that can have different link functions. We thus consider a system of equations:

L (}’1,t) =t a1t QYo 1 o+ QgYie—1 T Bix + €1
L (}’z,t) =Cyt a1 Y1e-1 + A2Y20-1 ot Qo Yir—1 T Bax + &xt

LK(yK,t) =cx tag1Yie-1 t QaYoe—1 + o+ Agg V-1 T BrX + ekt

(6)

where L, 1?, ..., LX are different link functions. To model the relationship between climatic shocks
and food security, we employed a logistic link function. This leads to the well-known logit model,
which is suitable when the dependent variable is binary. This has been effectively utilized in various
food security-related studies, such as Ruel et al. (2010), Lobell and Burke (2010), and Smith and
Haddad (2015). The general form of the regression equation for the logit model is:

. P (Y =1)
logit(P,(Y = 1)) = ln< ) = Po + B1X1e + BaXor + -+ BnXnt

1-P(Y=1)

(7)

where P;(Y = 1) represents the probability of Y occurring at time t, and X;;, X,¢, ..., X are the
independent variables at time t. To model the relationship between climatic shocks and agricultural
prices and wages, the link function is linear.

We focus on the direct and indirect relationships between climatic shocks and food security, where
the indirect effects operate through agricultural prices and wages. Climatic shocks are treated as
exogenous; they influence agricultural wages, prices, and food security, but the causality is
unidirectional. Climatic phenomena such as droughts or floods are external factors not influenced by
short-term dynamics within the agricultural economy or food security system. This ensures that
climatic conditions drive changes in wages, prices, and food security without feedback affecting the
shocks themselves. This allows us to focus on a system of three layered vector equations that
summarize the joint process of climatic shocks, the agricultural economy, and food security
outcomes:

Xt = h(Xt—ll th):
Yt = CY+AYYt_1 +BYXt+€l}-/,
F, =logit™(cf + AFY,_; + BF X, + &f),

(8)

where:

e X, is an M X 1 vector of observations of exogenous variables at time t, where M is the
number of exogenous variables. These variables are generated by an unknown function h,

which depends on past values of the exogenous variables and innovations .

e Y,isa K x 1 vector of observations of endogenous variables at time t, where K is the number
of endogenous variables. The endogenous variables are generated by an autoregressive
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process, with c¢¥ as a K x 1 vector of constants, AY as a K X K matrix of autoregressive
parameters, BY as a K X M matrix of coefficients for the exogenous variables, and & as a
vector of innovations.

e F,is aD X 1vector of observations of binary outcomes, generated by applying the inverse
logit transformation to a linear combination of the lagged endogenous variables Y;_;, the
exogenous variables X;, and innovations s,_.F. Here, cf is a D x 1 vector of constants, AF is a
D x K matrix of coefficients for the lagged endogenous variables, and BF isa D X M matrix of
coefficients for the exogenous variables.

The regression system can be estimated equation by equation and interpreted as interconnected
panel time-series models, but the parameters should always be considered within the context of a
larger dynamic system. Climatic conditions X,, driven by external influences &, affect the
endogenous variables Y; (representing the agricultural economy) and reverberate through the
system via autoregressive dynamics. Food security outcomes F; are determined by both the lagged
state of the agricultural economy and climatic shocks, meaning food security is impacted by both
direct and indirect climatic effects. As a result, climatic shocks can have lingering impacts on food
security outcomes over multiple periods, capturing complex real-world phenomena.

For example, consider a drought event (entering the system as a shock in ). In the first period, the
drought reduces crop yields (entering through X;), leading to a decline in agricultural wages,
represented by Y;, due to decreased demand for labor. In the following period, this wage reduction
lowers household purchasing power, diminishing food demand and affecting prices. Over time, this
initial drought shock propagates through the economy, influencing wages and prices (represented
by Y;4p for h > 1), which can have long-term effects on food security outcomes.

Finding insignificant coefficients for climatic impacts in the food security outcome equations, while
observing significant coefficients in the wage or price equations, does therefore not imply that food
security is unaffected by climatic shocks. Rather, it suggests that these shocks indirectly affect food
security through their impact on the agricultural economy. Similarly, variables not explicitly included
in the food security outcome equation can still influence the system. For instance, £/ may capture the

price impacts of conflict shocks, which can subsequently propagate through F;.

4.2 Regression Specification

For the food security outcomes, we employed two logit specifications to capture different levels of
food insecurity. The first specification uses a binary indicator as the dependent variable, set to 1 when
the IPC phase is 2 or higher (food stress). The second specification denotes 1 when the IPC phase is
3 or higher (food crisis). For food prices and agricultural wages, the dependent variables are the
percentage changes in local domestic food prices and local agricultural wages, respectively.

The primary independent variables are drought and flood anomalies derived from rainfall data and
vegetation health, measured using NDVI anomalies. We also include a range of control variables such
as fuel prices, global food prices, demographic factors, seasonal dummies, and time trends. Compared
to the conceptual model, this expands X, (climatic shocks) by introducing W, (additional economic
variables like exchange rates and global food prices that enter contemporaneously and with lags), Z;
(additional economic variables that enter with lags) and G; (time-invariant controls), to allow for
additional covariates to enter the model differently.
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The final form of the regression system is:

4 12
AYy
logit(pstress — stress +Z Z stress_~ "kt-p Z Z stressX
git(P; ) 7 mt—p
m=1 =
6 7
t-p tress mt _Fmit-p stress stress
0503 i e zzﬁs +zﬁ (o)
AW t—p-1 Ath —p-1 (Gm.e)
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kt-p—-1 m=1p=
6 7 15
+ z Z 'BCHSISAW mt —p Z Z BCI‘]SIS % mt —p Z 'B%"isis ln(Gm,t) + stcrisis
mt—-p-1 mit-p-1
m=5p=0 m=7 p= m=8

4
- A4Y,
price prlce price “Tkt-p prlce
a, +ZZ g ZZQ
m= =

6 7
AWmt -p rice Ath _Tomit-p rice rice
+22ﬁpme +ZZ[3P +Zﬁp In(Gpt) + €8
AWt —p—1 AZptps (Gme)

m=5p= m=7p=
AY i p
Aytwage _ C(\)/vage + Z 2 a]\évageAY + 2 Z gwage mt »
kt—-p—-1 m=1p=
7

+ Z Zﬁwage AWmt -p z Z'Bwage Ath -p Z 'Bwagel (Gmt) +¢ wage

m=5p= AWmt -p—1 m=7p= Ath -p—-1
(9)

Where:

e P§Uess is the probability of IPC level 2 or greater (food stress), and P! is the probability of
IPC level 3 or greater (food crisis).

e AYy: p are agricultural prices and wages, where AYtpme is the percentage change in domestic
food prices, and Athage is the percentage change in local agricultural wages.

e Thereare M = 15 exogenous variables. Note that m indexes over (X, W, Z, G) in the notation:

0 Xpmt—p represents the four main independent variables (m =1, ...,4): flood and
drought anomalies, derived from rainfall and NDVI.

o AW, +—p represents the percentage changes in exchange rates and global food prices
(m =5,6)

o AZpy ., represents the percentage changes in fuel prices (m = 7).

0 Gpp includes eight additional control variables (m =38§,...,15) : time trend,
population density, terrain ruggedness, cropland shares, pastureland shares, and
seasonal dummies for winter, summer, and spring.

e ,captures the dependencies on the endogenous variables, which result in autoregressive
dynamics in the agricultural price equations, and (5, captures the dependencies on the
exogenous variables.

e & represents the error term.
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We incorporated up to 12 lag periods to capture the delayed effects of climate shocks, consistent with
studies such as Tang et al. (2021) and Prather et al. (2023). Economic variables like agricultural
wages, fuel prices, domestic food prices, exchange rates, and global food prices often respond to
climatic shocks with time lags, as indicated by Schmidhuber and Tubiello (2007).

The system includes many parameters, and to assess the cumulative impact of various factors, we
sum the coefficients across all lags. This approach provides insights into the combined influence of
these factors over time. For the logit equations, we convert the parameter estimates into marginal
effects to aid interpretation, calculated over the full-year effects. Robust standard errors are used for
all parameters to address potential heteroscedasticity. Finally, the estimated parameters allow us to
predict the probabilities of food stress and food crisis, generating averages for each administrative
area. This enables mapping variations in food insecurity risks between 2009 and 2023.

5. Results

This section presents the results of the logit regressions estimating the impact of climatic and
economic shocks on food security. The results are presented in stages. First, we examine the direct
effects of climatic shocks, particularly rainfall and NDVI anomalies, on food stress and food crisis.
Next, we evaluate the role of economic factors, such as changes in food prices and agricultural wages,
in influencing food insecurity, with a focus on how these variables react to climatic shocks.

5.1 Logit Regression Estimates for Food Stress and Food Crisis Drivers

Table 2 reports the results of the logit regressions for two thresholds of food insecurity: IPC phase 2
or greater (food stress) and IPC phase 3 or greater (food crisis). The model includes climatic variables
(rainfall and NDVI anomalies), economic factors (food prices, agricultural wages), and a set of control
variables to capture structural determinants of food security. The model is estimated using monthly
data with twelve lags. To summarize, the coefficients are combined to represent the cumulative
impact over 12 months, with marginal effects indicating the corresponding change in probability.

Seasonal Effects

Before analyzing the impacts of the climatic variables, it is useful to first consider the average
seasonal dynamics captured by the seasonal controls. In Afghanistan, floods most often occur during
the spring, particularly from March to June, due to snowmelt from mountainous regions and seasonal
rainfall. As temperatures rise, snow from higher altitudes melts, and combined with heavy rainfall,
this leads to flooding, especially in river valleys and lower-lying areas. Floods can also occur during
the summer, particularly during the monsoon season from July to September, though this impact is
less widespread than in the spring.

Droughts in Afghanistan typically occur during the summer and autumn, especially from June to
November, due to limited rainfall. Areas that rely on seasonal rain or snowmelt for water are
particularly affected. The arid and semi-arid climate, combined with climate variability, makes the
country highly susceptible to droughts. Droughts are often worsened by insufficient winter
snowpack or reduced spring rains, leading to water shortages, reduced agricultural output, and
declining groundwater levels.
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Table 2: Logit Regression Estimates for Food Stress and Food Crisis

The table presents logistic regression estimates for food insecurity under IPC = 2 (food stress) and IPC = 3 (food crisis). The
coefficients represent the cumulative impact over 12 months of a one-unit change in each predictor variable, with the
marginal effects indicating the corresponding change in probability. Note that flood anomalies are negative values, and
combined with a negative coefficient, they result in an increased probability proportional to the severity of the flood
indicator. To simplify interpretation, the negative anomalies are entered into the model as absolute values, ensuring that
positive coefficients indicate an increase in risk.

IPC 2 2 (Food Stress)
Marginal Effect

IPC = 3 (Food Crisis)

Coefficient Coefficient Marginal Effect

Flood anomalies
Drought anomalies
Positive NDVI anomalies

Negative NDVI anomalies

1.194** (0.026)
0.227* (0.039)
0.918* (0.021)
0.449% (0.024)

0.234** (0.005)
0.045** (0.008)
0.180*** (0.004)
0.088*** (0.005)

0.628** (0.036)

-0.100* (0.052)
0.158** (0.028)
0.399%** (0.032)

0.059** (0.003)

-0.009* (0.005)
0.015*** (0.003)
0.037** (0.003)

Food prices
Agricultural wages

Fuel prices

-0.006*** (0.001)
-0.005*** (0.001)
0.050** (0.001)

-0.001*** (0.0002)
-0.001*** (0.0002)
0.010%** (0.0001)

0.001 (0.002)
-0.037** (0.002)
0.028*** (0.001)

0.000 (0.0002)
-0.003*** (0.0002)
0.003*** (0.0001)

Global food prices 0.034***(0.001)  0.007***(0.0001)  -0.002***(0.001) -0.0002***(0.0001)
Exchange rate -0.029*** (0.001) -0.006*** (0.0003) 0.024*** (0.002) 0.002*** (0.0002)
Log Cropland -0.129***(0.004)  -0.025***(0.001)  -0.463*** (0.007) -0.043*** (0.001)
Log Ruggedness Terrain 0.465*** (0.011) 0.091*** (0.002) 1.958*** (0.031) 0.183***(0.002)
Log Population Density 0.258*** (0.006) 0.051***(0.001) 0.799***(0.014) 0.075***(0.001)
Log Pastureland -0.108*** (0.016)  -0.021*** (0.003) 0.707*** (0.047) 0.066*** (0.004)
Winter Dummy 0.114***(0.018) 0.022*** (0.004) 0.372***(0.027) 0.035*** (0.003)
Summer Dummy -0.163***(0.019)  -0.032***(0.004)  -0.197*** (0.028) -0.018*** (0.003)

Spring Dummy 0.500*** (0.019) 0.098*** (0.004) 0.916*** (0.026) 0.086*** (0.002)
Constant (Fall) -12.190*** (0.224) -48.956*** (0.778)

N 112,711 112,711

Pseudo R2 0.147 0.293

Correctly predicted 69.14% 87.89%

Note: *p < 0.1, **p < 0.05, **p < 0.01

The seasonal dummies reveal important variations in food insecurity risks throughout the year. Food
insecurity is highest during the winter and spring months, with food stress increasing by 2.2
percentage points in winter and 9.8 percentage points in spring. Similarly, food crisis risks rise by 3.5
percentage points in winter and 8.6 percentage points in spring. These seasonal effects likely reflect
reduced agricultural activity in winter and the pre-harvest lean season in spring when food stocks
are low. They also coincide with the flooding season, which is important for interpreting the marginal
effects of flood anomalies. In contrast, summer is associated with a decrease in food insecurity, with
food stress and food crisis risks falling by 3.2 and 1.8 percentage points, respectively, as harvests
replenish food supplies. This seasonal baseline is important when analyzing the marginal effects of
the drought variables.

Climatic Shocks: Flood and Drought Anomalies, NDVI Anomalies

The results underscore the impact of climatic shocks on food insecurity outcomes. Both rainfall
anomalies, characterized by flood and drought events, and NDVI anomalies, reflecting vegetation
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health, emerge as key predictors of food stress and food crisis, with differing effects across the two
levels of food insecurity.

Flood anomalies, defined by excessive rainfall, have a significant positive effect on both food stress
and food crisis risks. For food stress, the coefficient of 1.194 is significant at the 1% level, indicating
that a one-unit increase in flood anomaly severity—a one-in-six-year flood event!—is associated
with a 23.4 percentage point increase in the probability of food stress. Similarly, for food crisis, the
coefficient of 0.628, also significant at the 1% level, implies a 5.9 percentage point increase in the
probability of a food crisis. These findings are consistent with expectations, as severe flooding can
damage crops, disrupt supply chains, and displace populations. When combined with the average
spring increase in food stress (9.8%) and food crisis (8.6%), this translates to a 33.2 percentage point
increase in food stress and a 14.5 percentage point increase in food crisis.

Drought anomalies, defined by rainfall shortfalls, present a nuanced picture. For food stress, the
positive coefficient of 0.227 is significant at the 1% level, suggesting that worsening drought
conditions correspond to a 4.5 percentage point increase in food stress risk, aligning with known
adverse effects of drought on agriculture. For food crisis, however, the coefficient of -0.100,
significant at the 10% level, indicates a slight reduction (0.9 percentage points) in the likelihood of a
food crisis. This result may be due to market adjustments, aid interventions, or shifts in livelihood
strategies that mitigate the immediate impacts of drought on severe food insecurity. An alternative
explanation involves the joint effect of negative NDVI and rainfall anomalies, with the former
reflecting poor vegetation health due to insufficient rainfall. The coefficient for negative NDVI
anomalies is 0.399, significant at the 1% level, with a marginal effect of a 3.7 percentage point
increase in food crisis probability. When a region experiences both a one-unit increase in drought
severity and a similarly negative NDVI anomaly, the combined marginal effect on food crisis
probability is a 2.8 percentage point increase (-0.9% from drought anomalies plus 3.7% from
negative NDVI anomalies). Combining this figure with the typical post-harvest food security benefits
captured by the summer dummy still results in a net 1% increase in food crisis risk.

Positive NDVI anomalies, indicating better-than-average vegetation health, have mixed effects on
food insecurity. For food stress, the coefficient is 0.918, with a marginal effect of an 18 percentage
point increase, significant at the 1% level. For food crisis, the coefficient is 0.158, with a marginal
effect of a 1.5 percentage point increase, also significant at the 1% level. These results suggest that
improved vegetation health is unexpectedly associated with increased food insecurity. A plausible
explanation is that positive NDVI anomalies may result from previous excessive rainfall that has led
to both flooding and subsequent lush vegetation. In this case, NDVI may indicate healthy natural
vegetation while simultaneously capturing the destructive effects of floods on crops. High NDVI
readings are also likely to coincide with spring and should be considered alongside the negative
impacts of the lean season. In this light, the combined marginal effect on food stress probability is
substantial at 41.4 percentage points (23.4% from flood anomalies plus 18% from positive NDVI
anomalies). For food crisis, the total increase is 7.4 percentage points (5.9% from flood anomalies

1 A one-unit increase in a z-score corresponds to an event becoming more extreme. To translate this into a "one-in-six-
years" event, we consider that a z-score of 1 corresponds to an event that has a 15.87% probability of being more extreme
(i-e., a1 in 6.3 chance of occurring). This means such an event would be expected approximately once every six years.
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plus 1.5% from positive NDVI anomalies). These figures increase to 51.2% and 16%, respectively,
when considering the average lean season effect captured by the spring dummy.

Negative NDVI anomalies, reflecting below-average vegetation health, show the expected effect on
food insecurity. For food stress, the coefficient is 0.449, with a marginal effect of an 8.8 percentage
point increase, significant at the 1% level. For food crisis, the coefficient is 0.399, with a marginal
effect of a 3.7 percentage point increase, also significant at the 1% level. These results indicate that
poor vegetation health is indicative of poor agricultural yields. The effects are strong enough to offset
the usual beneficial impact of summer. The joint effects of drought anomalies and negative NDVI
anomalies further exacerbate food insecurity risks. For food stress, the combined marginal effectis a
13.3 percentage point increase (4.5% from drought anomalies plus 8.8% from negative NDVI
anomalies). For food crisis, the net increase is 2.8 percentage points (-0.9% from drought anomalies
plus 3.7% from negative NDVI anomalies). This highlights the significant rise in food insecurity risk
associated with the simultaneous occurrence of drought and poor vegetation health.

These findings illustrate the complex interplay between different climatic shocks and their combined
effects on food security. While individual climatic variables significantly affect food insecurity, their
interactions can amplify these impacts, particularly when seasonality and joint occurrence are
considered. The analysis underscores the economic importance of floods compared to droughts and
highlights the need to consider multiple, interacting climatic factors in policy planning and
interventions aimed at mitigating food insecurity risks.

Economic Factors: Food Prices and Agricultural Wages

The analysis highlights the complex influence of economic variables on food insecurity. Changes in
food prices and agricultural wages play a key role in determining food security outcomes, though
their effects are context-dependent.

The results for food prices, particularly for food stress, are somewhat counterintuitive. The
coefficient of -0.006, with a marginal effect of -0.001, suggests that rising food prices reduce the
likelihood of food stress by 0.1 percentage points for every 1% increase in food prices. This result,
significant at the 1% level, likely reflects the dual nature of food prices in agricultural regions: while
higher prices can limit access for net consumers, they may improve income and food security for
producers benefiting from higher market prices. For food crisis, however, the marginal effects
indicate no significant relationship, suggesting that other factors dominate in severe cases of food
insecurity.

The impact of food prices becomes clearer when considered with other variables. For example, a 10%
increase in food prices combined with a 10% rise in fuel prices results in a 9 percentage point
increase in food stress probability. This suggests that while isolated food price increases may benefit
producers and reduce food stress, broad-based inflation encompassing food, fuel, and other
essentials exacerbates food insecurity. Alternatively, when a 10% increase in food prices coincides
with global food price hikes, the net effect is a 6 percentage point increase in food stress probability
(a 1% rise in global food prices results in a 0.7 percentage point increase in food stress probability).
This highlights the importance of considering the source of inflation: global impacts on imported food
prices versus isolated local price increases that benefit producers.
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Further complexity arises when domestic inflation is unpacked further, considering climatic shocks
as sources of inflation. For instance, when drought anomalies (+4.5%) and negative NDVI anomalies
(+8.8%) are combined with a 10% rise in food prices (-1%), the net effect is a 13.2 percentage point
increase in food stress.

Fuel prices alone show a consistent positive relationship with food insecurity risk. A 1% increase in
fuel prices is associated with a 1 percentage point increase in food stress probability (coefficient of
0.050, marginal effect of 0.010) and a 0.3 percentage point increase in food crisis probability
(coefficient of 0.028, marginal effect of 0.003), both significant at the 1% level. This reflects the role
of fuel in food production and distribution, where higher costs raise transportation expenses and
food prices, increasing the likelihood of food insecurity.

Agricultural wages also show a clear relationship with food security. Rising wages are linked to
reductions in both food stress and food crisis risks. Specifically, a 10% increase in wages reduces
food stress probability by 1 percentage point (coefficient of -0.005, marginal effect of -0.001) and
food crisis probability by 3 percentage points (coefficient of -0.037, marginal effect of -0.003), both
significant at the 1% level. This supports the view that higher wages improve purchasing power,
enhancing access to food and reducing food insecurity. However, the effects of rising wages must be
considered against inflationary pressures to assess real purchasing power changes. For example, a
10% increase in wages with a 10% increase in food and fuel prices results in an 8 percentage point
increase in food stress risk (-1% from wages, +1% from food prices, +10% from fuel prices). For food
crisis, a similar combination results in no net change (-3% from wages offset by +3% from fuel
prices). This suggests that inflation, particularly rising fuel prices, erodes positive effects of wage
growth on food security, making wage increases effective only when real wages rise.

The effects of exchange rate depreciation are mixed. A 1% depreciation reduces food stress
probability by 0.6 percentage point (coefficient of -0.029, marginal effect of -0.006) but increases
food crisis probability by 0.2 percentage point (coefficient of 0.024, marginal effect of 0.002), both
significant at the 1% level. The reduction in food stress may reflect benefits to agricultural exporters,
as a weaker currency boosts the competitiveness of locally produced food, acting as a stimulus.
However, for severe food insecurity, the higher cost of imported goods—particularly food and fuel—
due to depreciation increases food crisis likelihood. When exchange rate depreciation coincides with
rising fuel and food prices, the effects on food insecurity are compounded. For example, a 10%
depreciation combined with a 10% increase in fuel prices leads to a 3 percentage point increase in
food stress risk (-6% from depreciation, +10% from fuel prices, -1% from food prices). For food crisis,
the net effect is a 5 percentage point increase (+2% from depreciation, +3% from fuel prices).

Control Variables

The control variables, including cropland, pastureland, terrain ruggedness, and population density,
significantly influence food security outcomes. Cropland has a protective effect, with a 10% increase
reducing the probability of food stress by 2.5 percentage points and food crisis by 4.3 percentage
points, highlighting the role of local agricultural production in bolstering food supply and reducing
external dependence. In contrast, rugged terrain worsens food insecurity, increasing the likelihood
of food stress by 9.1 percentage points and food crisis by 18.3 percentage points, likely due to
challenges in agriculture, market access, and infrastructure development. Population density also
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correlates with increased food insecurity; a 10% rise in density leads to a 5.1 percentage point
increase in food stress probability and a 7.5 percentage point increase in food crisis probability,
indicating the resource competition and supply chain pressures faced by densely populated areas.

52 VAR Estimates for Climate Impact on Food Prices and Wages

Table 3 shows the VAR estimates assessing the impact of climatic shocks and economic variables on
food prices and agricultural wages. The model includes climatic variables (rainfall and NDVI
anomalies), economic factors (domestic and global food prices, fuel prices, exchange rates), and
structural controls to capture regional characteristics. The coefficients are summarized to represent
the cumulative impact over 12 months of a one-unit change in each predictor variable, indicating the
corresponding percentage change in the month-over-month outcome variable. For easier
interpretation, we annualize the inflation impacts.

Table 3: Vector Autoregression Estimates for Climate Impact on Food Prices and Wages

The table presents regression estimates for changes in food prices and wages. The coefficients represent the cumulative
impact over 12 months of a one-unit change in each predictor variable, indicating the corresponding percentage change in
the outcome variable. Note that flood anomalies are negative values, and when combined with a negative coefficient, they
result in an increase in the outcome variable proportional to the severity of the flood indicator. To simplify interpretation,
the negative anomalies are entered into the model as absolute values, ensuring that positive coefficients indicate an increase
in the outcome variable.

Percentage change in food prices Percentage change in agricultural wages

Flood anomalies
Drought anomalies
Positive NDVI anomalies

Negative NDVI anomalies

0.279%* (0.072)
-0.093 (0.107)

0.593%* (0.057)
0.515%* (0.063)

0.149** (0.075)
0.418* (0.111)
0.085 (0.059)
0.018 (0.065)

Food prices
Agricultural wages
Fuel prices

Global food prices

Exchange rate

0.737%* (0.003)
0.017%** (0.004)
0.061%* (0.002)
0.045%* (0.002)
0.195%* (0.004)

-0.039** (0.004)
0.628** (0.004)
0.010*** (0.002)
-0.028** (0.002)
-0.091*** (0.004)

Log Cropland
Log Ruggedness Terrain
Log Population Density

Log Pastureland

-0.010 (0.012)
0.039 (0.030)
-0.042** (0.018)
0.030 (0.044)

-0.034* (0.012)
0.064** (0.031)
-0.018 (0.019)
-0.219%** (0.046)

Winter Dummy

0.100* (0.052)

0.119** (0.054)

Summer Dummy -0.182*** (0.054) -0.056 (0.056)
Spring Dummy -0.017 (0.052) -0.016 (0.054)
Constant (Fall) -0.204 (0.599) 0.826 (0.620)
N 112,711 112,711

R2 0.813 0.527

Note: *p < 0.1, **p < 0.05, **p < 0.01.

Seasonal Effects

Seasonal dynamics play a key role in Afghanistan's agricultural production and labor demand. Winter
months typically see reduced agricultural activity due to cold temperatures and snow cover, leading
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to lower labor demand and potentially higher food prices due to limited supply. Spring marks the
start of the planting season, while summer and fall are associated with increased agricultural output
and labor demand, potentially resulting in lower food prices and higher wages.

The regression results confirm the variations in food prices and agricultural wages across the year,
captured by the seasonal dummy variables. During winter, food prices increase at an annualized rate
of 1.27% (coefficient of 0.100, significant at the 10% level), while agricultural wages rise by 1.50%
(coefficient of 0.119, significant at the 5% level). This suggests that despite reduced agricultural
activity, there may be higher labor demand for non-agricultural activities or preparation for planting.

In contrast, summer is associated with a decrease in food prices, with an annualized effect of -2.13%
(coefficient of -0.182, significant at the 1% level), likely reflecting increased food supply due to
harvests. However, the impact on agricultural wages during summer is not statistically significant,
indicating that labor demand may not change significantly during this season. These seasonal effects
provide important baselines for interpreting the effects of climatic and economic variables on food
prices and wages throughout the year.

Climatic Shocks: Flood and Drought Anomalies, NDVI Anomalies

The regression results confirm flood, drought, and NDVI anomalies as key predictors of food prices
and wages.

Flood anomalies have a positive effect on both. For food prices, the coefficient of 0.279 is significant
at the 1% level, indicating that a one-unit increase in flood anomaly severity over 12 months leads to
a 0.279 percentage point increase in monthly food price inflation, translating to an annualized
increase of about 3.40%. This aligns with expectations, as floods damage crops and disrupt supply
chains, reducing supply and driving up prices. For wages, the coefficient of 0.149 is significant at the
5% level, corresponding to an annualized increase of about 1.80%. This suggests floods may boost
labor demand for recovery efforts, raising wages. Floods often coincide with positive NDVI anomalies
due to excess rainfall resulting in lush vegetation despite crop damage. Combining the annualized
effects of flood anomalies (3.40%) and positive NDVI anomalies (7.36%) results in an approximate
10.76% increase in food prices. The impact on wages is driven by flood anomalies, as positive NDVI
anomalies do not have a significant effect on wages. The estimated impact on prices (10.76%)
exceeds that on wages (1.80%), creating a net negative purchasing power effect (-8.96%). The
compound effect of floods during spring further exacerbates these impacts, as floods during planting
season disrupt agricultural activities, delay planting, and reduce yields. This amplifies inflationary
pressure on food prices, and modest wage increases do not offset the higher food costs, increasing
food insecurity.

Drought anomalies present a different picture. For food prices, the coefficient of -0.093 is not
statistically significant. For wages, the coefficient of 0.418 is significant at the 1% level,
corresponding to an annualized increase of 5.17%. This suggests drought conditions increase labor
demand for mitigation efforts, raising wages. Droughts often coincide with negative NDVI anomalies,
reflecting poor vegetation health due to insufficient rainfall. The coefficient for negative NDVI
anomalies on food prices is 0.515, significant at the 1% level, indicating a one-unit increase leads to
an annualized 6.36% increase in food prices. Combined, drought anomalies (no significant effect on
prices) and negative NDVI anomalies (6.36% increase) suggest that negative NDVI anomalies
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primarily drive price increases during droughts. For wages, the combined effect of drought and
negative NDVI anomalies results in a 5.17% annualized increase, driven by drought anomalies, as
negative NDVI anomalies do not significantly affect wages. This simultaneous increase in food prices
and wages suggests that while workers earn more for mitigation efforts during droughts, higher food
prices offset these gains, resulting in a net negative purchasing power effect (-1.19%). Droughts
during summer can intensify these impacts. Summer usually sees increased output and lower prices
after harvest, but droughts can reduce yields, causing price increases that exceed the typical seasonal
decrease. This disrupts the benefits of summer harvests, worsening food insecurity as wage increases
fail to compensate for higher prices.

Positive NDVI anomalies, indicating better vegetation health, unexpectedly increase food prices. The
coefficient of 0.593 is significant at the 1% level, corresponding to an annualized increase of about
7.36%. This suggests positive NDVI anomalies may be linked to factors like excessive rainfall causing
floods, which damage crops despite lush vegetation. The lack of a significant effect on wages
(coefficient of 0.085, not significant) indicates positive NDVI anomalies do not impact labor demand
or wages. Combined with flood anomalies, the cumulative annualized increase in food prices reaches
about 10.76% (7.36% from positive NDVI anomalies and 3.40% from flood anomalies).

Negative NDVI anomalies have a significant effect on food prices, shown by a coefficient of 0.515,
significant at the 1% level, corresponding to an annualized increase of about 6.36%. This aligns with
expectations, as poor vegetation reduces yields, leading to higher prices. The effect on wages is not
significant, suggesting negative NDVI anomalies alone do not influence wages. However, combined
with drought anomalies (which significantly increase wages), the overall impact includes a 6.36%
increase in prices and a 5.17% increase in wages. Similar to the drought scenario, purchasing power
may erode due to the larger increase in prices compared to wages.

Economic Factors: Food Prices, Agricultural Wages, Fuel Prices, Global Food Prices, Exchange
Rates

The estimates highlight the influence of economic variables on food prices and agricultural wages
and show how their interplay shapes food security dynamics in Afghanistan.

The coefficients for the percentage change in food prices and agricultural wages on their own lagged
values are significant at the 1% level, indicating strong persistence. For food prices, the coefficient of
0.737 suggests that past increases lead to sustained future increases, with a decay rate of 16 months
for an impact to dissipate by 99%. For agricultural wages, the coefficient of 0.628 corresponds to a
10-month decay rate at the same threshold. This persistence compounds the effects of climatic
shocks on prices and wages.

Agricultural wages have a small but significant positive effect on food prices, with a coefficient of
0.017 (significant at the 1% level), corresponding to an annualized effect of about 0.20%. This
suggests that wage increases can raise production costs, which are passed on to consumers as higher
food prices, consistent with a wage-inflation spiral. However, the effect remains relatively weak. The
percentage change in food prices has a significant negative effect on agricultural wages, with a
coefficient of -0.039 (significant at the 1% level), corresponding to an annualized effect of about -
0.47%. This indicates that rising food prices adversely impact wages, implying that nominal wages
do not keep up with inflation, leading to a decline in purchasing power.
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Fuel prices have a significant positive relationship with both food prices and wages. A 1% increase
in fuel prices is associated with an annualized increase of about 0.74% in food prices (coefficient of
0.061, significant at the 1% level) and 0.12% in wages (coefficient of 0.010, significant at the 1%
level). Higher fuel costs increase transportation and production expenses, contributing to higher food
prices. The modest wage increase may reflect higher labor demand in sectors affected by fuel costs,
though the impact on wages is smaller than on prices, potentially reducing purchasing power.

Global food price increases have a significant positive effect on domestic food prices, with a
coefficient of 0.045 (significant at the 1% level), corresponding to an annualized increase of about
0.55% per 1% increase in global prices. This confirms a pass-through effect from global to domestic
markets. For agricultural wages, the coefficient is -0.028 (significant at the 1% level), corresponding
to an annualized decrease of about -0.33% per 1% increase in global food prices. This wage
suppression may result from higher input costs, reducing employer profitability.

Exchange rate depreciation significantly affects both food prices and wages. A 1% depreciation leads
to an annualized increase of about 2.39% in food prices (coefficient of 0.195, significant at the 1%
level) and an annualized decrease of about -1.08% in wages (coefficient of -0.091, significant at the
1% level). Currency depreciation raises the cost of imported goods, including food and agricultural
inputs, driving up food prices. At the same time, increased costs can reduce employer profitability,
lowering nominal wages for agricultural workers. Exchange rate depreciation typically leads to
inflationary effects on food prices and general price levels. If combined with a similar rise in fuel
prices, the impact on food prices compounds. A 1% increase in both exchange rate depreciation and
fuel prices results in an annualized increase of about 3.13% in food prices (2.39% from exchange rate
and 0.74% from fuel prices). For wages, the combined annualized effect is about -0.96% (-1.08%
from exchange rate and 0.12% from fuel prices). This illustrates how currency devaluation raises
prices but not wages, eroding purchasing power and worsening food insecurity.

Control Variables

The control variables highlight key determinants of food price and wage inflation, indicating regional
convergence and divergence dynamics.

Cropland shows a negative relationship with wage growth, where a 10% increase in cropland area
links to an annualized wage decrease of about -0.40% (coefficient of -0.034, significant at the 1%
level), possibly due to labor oversupply or productivity improvements reducing labor demand. It
could also signal a labor shift to other sectors as agricultural efficiency rises.

Terrain ruggedness is associated with higher wage growth, with a coefficient of 0.064 (significant at
the 5% level), indicating an annualized wage increase of about 0.79%. This suggests that accessibility
challenges in rugged areas require higher wages to attract labor, with difficult conditions and higher
living costs contributing to this effect.

Population density correlates with lower food price inflation; a 10% increase results in an annualized
price decrease of about -0.50% (coefficient of -0.042, significant at the 5% level). Higher density may
enhance market efficiency and reduce transaction costs due to better infrastructure, competitive
markets, and efficient supply chains.
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Pastureland has a significant negative impact on wages, with a 10% increase linked to an annualized
wage decrease of about 2.57% (coefficient of -0.219, significant at the 1% level). This may stem from
the lower labor intensity of livestock farming compared to crop farming and the seasonal nature of
pastoral activities, often reliant on family labor.

5.3 Estimates for Food Stress and Food Crisis Risks

The logit models show strong predictive performance, correctly classifying 69.14% of food stress
cases and 87.89% of food crisis cases. These results highlight the importance of climatic and
economic variables in shaping food security and demonstrate the models' ability to capture complex
dynamics. The predictive power also points to their potential use in targeting and monitoring efforts.

To estimate the population at risk, we multiplied the population of each period by its predicted
probability of food stress and food crisis. These estimates were rescaled by fitting a linear regression
model, using the share of the population exceeding IPC levels 2 and 3 as the dependent variable and
the population-weighted probabilities as the predictor. The rescaled values were then used to
estimate the population at risk over time.

Geographical Variation in Modeled Risks

Tables 4 and 5 provide a detailed breakdown of the probability of food stress and food crisis across
Afghan provinces, along with provincial demographic data (NSIA, 2021) to capture population
exposure to these risks. Overall, while food stress is widespread, food crisis risk is more concentrated
but significant in certain areas.

Table 4 shows the probability of food stress, indicating moderate levels of food insecurity. Most
provinces fall into higher risk categories, with 28 of 34 provinces showing an average probability of
food stress above 50%, representing over 28 million people (89% of the country's population).
Notably, 12 provinces have probabilities between 61%-70%, and two provinces exceed 71%,
exposing large populations to chronic food stress. The distribution highlights widespread
vulnerability, particularly in provinces with larger populations facing high food stress likelihood.

Table 4: Probability of Food Stress across Provinces in Afghanistan

Table 4 shows the average probability of food stress over the full study period across Afghan provinces, broken down into
ranges of 0.1. The columns provide a demographic breakdown of the provincial statistics to understand overall population
exposure to relative risks. The majority of administrative areas are in the higher risk ranges, with probabilities over 50%.

Probability of food Number of Female Population Male Population Total
stress Province Population
0.31-0.4 1 302,409 311,072 613,481
0.41-0.5 5 1,442,998 1,490,696 2,933,694
0.51-0.6 14 5,583,803 5,799,679 11,383,482
0.61-0.7 12 7,506,594 7,781,242 15,287,836
0.71 and above 2 906,737 943,930 1,850,667
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Table 5 focuses on the probability of food crisis, a more severe form of food insecurity. Unlike the
food stress estimates, most provinces (22 out of 34) show a relatively low average probability of food
crisis, with rates below 10%, covering over 21 million people. However, four provinces stand out
with crisis probabilities over 30%, affecting a combined population of over 2.5 million. This points to
concentrated areas of acute food insecurity where immediate interventions may be needed to build
resilience and prevent further deterioration.

Table 5: Probability of Food Crisis across Provinces in Afghanistan

Table 5 shows the average probability of food crisis over the full study period across Afghan provinces, broken down into
ranges of 0.1. The columns provide a demographic breakdown of the provincial statistics to understand overall population
exposure to relative risks. The majority of administrative areas are in the lower risk ranges of under 10%, but there are
four hotspots with a combined population of 2.5 million where crisis risks have averaged over 30%.

Probability of food crisis Number of Province Female Population Male Population Total Population

0-0.1 22 10,677,500 11,070,559 21,748,059
0.11-0.2 6 3,243,391 3,358,709 6,602,100
0.21-0.3 2 577,507 598,622 1,176,129

0.31 and above 4 1,244,143 1,298,729 2,542,872

The maps in Figures 4 and 5 visually represent the spatial variation in food stress and crisis
probabilities across Afghan provinces.

The first map shows the probability of food stress, measured on a scale from 0.364 to 0.743. Darker
shades indicate higher probabilities of food stress. The provinces with the highest risk of food stress
are concentrated in the central and northern regions, with provinces like Ghor and Badakhshan
showing probabilities above 70%. This highlights a significant regional disparity in food stress risks,
where some areas consistently face moderate food insecurity. The western provinces such as Nimroz
and Hilmand, in contrast, show lower probabilities of food stress, which may reflect differences in
agricultural productivity and access to markets, as captured by our models.

The second map focuses on the probability of food crisis, with probabilities ranging from 0 to 0.547.
Similar to food stress, darker shades indicate higher risks of food crisis. The provinces most at risk
are Ghor and Badakhshan, where the probability of a food crisis is notably elevated, reaching around
55%. These provinces appear to be food insecurity hotspots, where chronic vulnerability may be
exacerbated by climatic shocks or economic disruptions due to conflict. The majority of other
provinces show relatively low probabilities of food crisis, under 20%, but the existence of a few high-
risk provinces raises concerns about concentrated humanitarian needs.

The maps reveal an important contrast between food stress and food crisis. While food stress risks
are widespread, affecting many provinces at high levels, food crisis risks are more localized, with only
a few provinces showing significant probabilities. This spatial clustering suggests that while many
regions experience moderate food insecurity, a smaller subset of provinces faces acute crises,
requiring targeted interventions. Provinces like Ghor and Badakhshan stand out in both maps,
indicating persistent and severe food security challenges that may require longer-term strategies to
address structural vulnerabilities.
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Figure 4: Probability of Food Stress Across Provinces in Afghanistan
This map illustrates the probability of food stress across Afghan provinces, with darker shades representing higher

probabilities. Provinces like Ghor and Badakhshan exhibit the highest probabilities, exceeding 70%, indicating widespread
moderate food insecurity. The western provinces, such as Nimroz and Hilmand, show lower food stress probabilities.

Probability of food stress
0.743

0.364

Figure 5: Probability of Food Crisis Across Provinces in Afghanistan
This map shows the probability of food crisis across Afghan provinces. Darker shades represent higher probabilities, with
provinces like Ghor and Badakhshan showing crisis probabilities of over 50%. In contrast, most other provinces have

relatively low crisis probabilities, below 10%.
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Temporal Variation in Modeled Risks

The logit models extend previous methodologies for tracking IPC exposure at the national level.
Andrée et al. (2020) showed how models can predict food crises using climatic and economic data,
while Penson et al. (2024) developed Yemen's Joint Monitoring Report, which integrates indicator
thresholds to assess IPC risks in a logit framework. Similarly, the current models offer a scalable tool
for monitoring food insecurity in Afghanistan, providing timely information to guide humanitarian
responses and resource allocation.

Figure 6 visualizes the model's ability to track food security trends over time. Following Andrée et al.
(2020) and Penson et al. (2024), probabilities were converted to percentages using a linear
regression and overlaid with administrative populations. By tracking historical and estimated
populations at risk of food stress and crisis, the model reveals temporal fluctuations in food
insecurity. Comparisons of historical data with estimated probabilities show the model's predictive
alignment with real-world events, making it a valuable monitoring tool.

Figure 6: Population at Risk of Experiencing Deterioration in Food Security

Figure 6 illustrates historical and estimated food stress in Afghanistan. The left plot compares the actual historical
population facing food stress (blue line) with the estimated population (green dashed line). The right plot shows the
estimated population at risk (purple line) alongside the food stress probability (orange dashed line). The upper panel
presents results for food stress, while the bottom panel tracks crisis risks. These visualizations demonstrate how modeled
populations are derived from probability outputs and how estimates align with historical data, revealing temporal trends
and fluctuations that categorical historical data may obscure.
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From 2010 to 2011, food stress probability and the affected population rose sharply, peaking during
the global food price crisis. After stabilizing in mid-2011, food stress declined from 2012 to 2014,
reaching a low in 2013, reflecting economic stabilization and better climatic conditions. Starting in
2015, the model estimates show a sharp rise, with peaks in 2016 and 2017 that align with FEWS NET
trends, climatic shocks, and political instability.

From 2018 onward, the model indicates worsening food insecurity, with consistently high food stress
from 2019 to 2022. These levels highlight Afghanistan's ongoing challenges, driven by conflict,
economic disruptions, and adverse climatic events. After 2022, a slight improvement in food stress
aligns with a stabilizing exchange rate and lower food and fuel prices. FEWS NET data during this
period are interpolated due to the absence of assessments between June 2021 and February 2023.

The bottom panel of Figure 6 shows sharper fluctuations in food crisis risks compared to food stress.
The model reveals significant volatility from 2016 to 2020, coinciding with droughts, conflict, and
economic shocks. The left panel shows that food crisis estimates are more variable than food stress
estimates, indicating that severe food security shocks are typically shorter. Estimated values spiked
during the 2010-2011 global food price crisis, while historical values remained low, possibly due to
under-reporting or the model's sensitivity to early warning signs.

Peaks in estimated values during the crises of 2016, 2017, and 2018 demonstrate the model's ability
to detect early warnings of risk escalation. From 2019 onward, historical and estimated trends
converge, though the model shows higher peaks, capturing extreme events not fully reported. Note
that no assessments were caried out between June 2021 and February 2023 and the FEWS NET data
is held constant over the period. This suggests the model's utility as a versatile tool for identifying
potential crisis escalation before periodic assessment data reflect it.

6. Discussion
6.1 Joint Effects of Climatic Shocks and Economic Variables

This study analyzed the impact of climatic and economic shocks on food security in Afghanistan. The
findings highlight that the impacts of climatic shocks, economic factors, and structural constraints on
food insecurity must often be interpreted together, emphasizing the need to monitor interconnected
indicators. For instance, monitoring drought risks alone is insufficient for early warning applications
or policy interventions and must be combined with additional indicators for context. In our model,
droughts measured by rainfall and negative NDVI anomalies show higher food insecurity risks when
occurring together. Drought alone increases food stress by 4.5 percentage points (1 z-score
deviation), while its joint occurrence with negative NDVI anomalies results in a 13.3 percentage point
increase, illustrating compounded effects. Seasonal factors further heighten these risks, especially
during the pre-harvest lean season.

Economic variables add complexity. In our model, rising food prices reduce food stress by 1
percentage point for every 10%, reflecting mixed impacts for producers and consumers. However,
food prices often rise concurrently with fuel prices and exchange rates, collectively worsening food
insecurity conditions. A 10% increase in both food and fuel prices leads to a 9 percentage point
increase in food stress probability. We also found that global food price hikes amplify food insecurity,
making domestic inflation resulting from global pass-through net negative for food security. Finally,
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price impacts must be interpreted alongside nominal wage effects and vice versa. For instance, floods
raise food prices by about 3.4% annually and agricultural wages by 1.8%, but the greater rise in food
prices erodes purchasing power, making food less accessible—an effect not fully captured by wage
data alone.

6.2 Food Security Monitoring

The interplay between environmental shocks and economic factors can create complex,
counterintuitive outcomes—for example, rising food prices may slightly reduce food stress in
agricultural regions due to increased income for producers, but when combined with inflationary
pressures, they exacerbate overall food insecurity. Effective early warning systems must therefore
target both direct and market-mediated food insecurity drivers.

Despite these complexities, the risks are well captured within a highly interpretable modeling
framework. Our final estimates demonstrate that significant spatial and temporal variations in food
insecurity can be tracked using readily observable data, making the model practical for real-time
monitoring and early intervention. For example, the model captures widespread food stress across
Afghanistan, with 28 out of 34 provinces exhibiting average probabilities of over 50% of being
classified as IPC phase 2 or higher. In contrast, food crisis risks are more localized, with provinces
like Ghor and Badakhshan showing probabilities exceeding 50%. These areas are likely more
vulnerable due to structural factors such as geographical isolation, limited infrastructure, and greater
exposure to climatic shocks.

The model's ability to reflect historical trends in food insecurity, such as through the global food price
crisis of 2010-2011 and periods of increased conflict and climatic shocks, reinforces its practical
proposition. Its capacity to detect early warning signals of escalating risks highlights the utility of this
approach for continuous monitoring. By leveraging such models, policy makers and humanitarian
organizations can anticipate food security crises, allocate resources efficiently, and implement timely
interventions that address the compounded risks of climatic and economic factors. This ongoing
monitoring is essential for managing the dynamic nature of food insecurity and improving resilience
in vulnerable regions.

6.3 Limitations and Future Research

While this study provides insights into the impacts of climatic and economic shocks on food security,
several limitations exist related to data availability, model specifications, and variable interactions.

The analysis relies on available datasets, limiting the granularity of certain indicators. Gaps in data,
such as from FEWS NET, highlight the need for higher-frequency monitoring and underscore
challenges in model validation when target data are missing. This introduces potential uncertainties
about precision during critical periods and may bias training. For example, data gaps during conflicts
or restricted access to regions may lead to underrepresentation of actual food insecurity, resulting in
lower risk estimates.

Although the models capture joint effects of climatic and economic shocks, disentangling causal
pathways remains challenging. The interactions between environmental conditions, market
dynamics, and food security are complex, even with linear models. Lagged effects in climatic and
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economic variables may obscure short-term interactions or create feedback loops not fully accounted
for in this framework. Further refinement is needed to capture these dynamics more effectively.

The models show strong predictive power in tracking spatial and temporal variations in food
insecurity but are limited by their focus on specific climatic and economic variables. Excluding factors
such as conflict intensity, political instability, or migration may result in unobserved risks affecting
model assessments. Including these variables in future models could enhance comprehensiveness
and predictive suitability. This study provides a data-driven foundation for future research to build
upon.

6.4 Policy Implications

The results highlight the interconnected nature of food security risks. Climatic shocks, economic
variables, and structural factors all contribute to food insecurity, often in ways not apparent when
considered separately. Examining their joint effects provides a more complete understanding of the
drivers of food insecurity. Despite the complexity of food insecurity in Afghanistan, clear areas of
interest for policy makers emerge from the results:

1. Climatic Shocks: The combined impact of drought and negative NDVI anomalies significantly
amplifies food insecurity risks, even when the effect of drought alone is muted. This underscores
the need for integrated policies addressing both water scarcity and vegetation health, such as
investments in drought-resistant crops, improved irrigation, and vegetation monitoring.

2. Economic Variables: Rising food prices, fuel prices, and exchange rate depreciation collectively
exacerbate food insecurity, especially when inflation affects essential goods. Measures like
currency stabilization, and income support for vulnerable households are critical for mitigating
these risks.

3. Seasonal Interventions: The seasonal variation in food insecurity points to the need for targeted
support during winter and spring when food stocks are low and agricultural activity is limited.
Expanding food assistance programs during these periods can help alleviate temporary spikes in
food insecurity. The seasonal fluctuations also suggest that goods of global markets do not flow
freely into the country, so trade policies can be enacted to counter offset seasonal shortages.

6.5 Clarification on Cumulative Effects

We focused on cumulative effects over a 12-month period, interpreted as the impact over a full year
following a one-unit deviation in the first month, or equivalently, as the impact at month thirteen
after a one-unit deviation spread over the preceding 12 months. These interpretations simplify the
assessment of economic significance, though real-world dynamics are unlikely to mirror such exact
scenarios. Our data indicate that rainfall shocks are often short-lived and more intense, while NDVI
shocks are more persistent, extending over several months. This contrasts with the stronger
marginal effects seen for rainfall z-scores at the 12-month cumulative level. If NDVI shocks last two
to three times longer than rainfall shocks, an NDVI marginal effect half or one-third the size of a
rainfall z-score change would be economically comparable.

Cumulative effects may also understate short-term risks. The impact of a one-unit increase in rainfall
anomaly over a single month depends on the specific lag coefficient, with contributions varying—
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some amplifying, others offsetting the total effect. Short-term impacts within three months post-
shock may exceed those observed over 12 months.

When assessing the impact of the preceding 12 months on month 13 outcomes, our inflation models
indicated significant persistence extending from month 14 onward, influencing annualized rates in
subsequent months. Long-duration shocks can extend their effects over multiple periods, making the
logit model's probabilistic nature crucial for interpretation. For instance, if the probability of food
stress increases by 25 percentage points over four consecutive months, at least one month is likely
to reach IPC phase 2 or higher, even if none individually surpasses a 50% threshold. During such
periods, community adaptation or aid may prevent escalation to severe food crises. Ngcamu and
Chari (2020) highlight that while droughts often increase food insecurity by reducing agricultural
output and affecting rural livelihoods, the shift from moderate to severe insecurity depends on
drought length, severity, and coping strategies.

Over longer horizons, the dynamic relationships confirmed by our model should be considered in
predictions. Although impulse response methods help trace shock propagation, they do not account
for community adaptation, complicating long-term impact assessments. This study focused on the
VAR's directional parameters to reveal underlying dynamics in the data.

7. Conclusion

This study analyzed the impact of climate and economic shocks on food security in Afghanistan. Using
logit and vector autoregression models, we captured how climatic anomalies, economic variables,
and structural factors collectively influence food stress (IPC phase 2 or greater) and food crisis (IPC
phase 3 or greater) outcomes.

The findings show that floods and droughts significantly impact food insecurity with effects varying
by impacts on vegetation health. Economic factors like food prices, agricultural wages, fuel costs, and
exchange rates further shape these effects, often in complex ways. Joint climatic and economic shocks
can erode purchasing power, limiting food access and raising food insecurity risks. Spatial and
temporal analyses highlight the uneven distribution of food stress and localized severe food crises.

The models' predictive strength demonstrated its potential for ongoing monitoring and early
warning, supporting timely policy responses. By updating these models with new data, policy makers
and humanitarian organizations can track food insecurity risks in near real-time and understand
regional vulnerability dynamics.

Addressing food insecurity in Afghanistan requires a comprehensive approach that considers the
interplay of climatic shocks, economic factors, and structural constraints. Effective strategies should
include targeted interventions, infrastructure development, market stabilization, and robust
monitoring systems.

The study's findings underscore key areas where further research is needed to enhance food security
policies in Afghanistan. Given that food prices, agricultural wages, and food security at stress and
crisis levels are significantly influenced by local supply disruptions and seasonality, research should
focus on:
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1. Climate-Resilient Agricultural Practices: Investigate adaptation measures such as
conservation agriculture, agroforestry, integrated soil fertility management, crop
diversification, and water management for local effectiveness and prevention strategies.

2. Market Integration and Infrastructure: Study ways to enhance trade, reduce post-harvest
losses, and improve market access to stabilize food supply and prices.

3. Shock-Responsive Safety Nets: Assess the effectiveness of pre-allocated, community-based
support programs that activate during crises, focusing on scalability, cost-effectiveness,
timeliness, and integration into existing social protection systems.

4. Data Monitoring, Early Warning Systems, and International Cooperation: Address data gaps,
enhance data collection, monitor key risk indicators, and foster regional partnerships. This
would support faster decision-making when observed indicators exceed preset action
thresholds, bolstering resilience through shared best practices.

By understanding these dynamics, policy makers can anticipate challenges and implement solutions
that safeguard vulnerable populations. The study shows that model-based approaches can enhance
agricultural resilience and food security, setting the stage for future research to include additional
controls, such as conflict intensity and unemployment, and conduct long-term analyses for greater
insight into trends and structural changes. This would refine models and broaden their application,
contributing to better early warning systems and policy interventions.
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