Прогноз изменения стока реки Амударьи в зависимости от водности года

Рахимов Ш.Х., Хамраев Ш.Р., Бегимов И.

САНИИРИ им. В.Д. Журина, МСВХ РУз

Совместное управление трансграничными водными ресурсами бассейна Аральского моря усилиями пяти стран Центральноазиатского региона является уникальным примером в мировой практике, когда страны не только планируют и координируют совместную деятельность, но и одновременно осуществляют годовое планирование и оперативное управление водораспределением на реках Амударья и Сырдарья.

В последние годы из-за увеличения частоты маловодья, неточности водоучета, работы верхних водохранилищ не в ирригационном, а в энергетическом режиме, и нестабильностью водоподачи, водоотведения при нарастающем дефиците водных ресурсов, в реке Амударья наблюдается неравномерность распределения воды между зонами формирования и низовьем реки.

На территории Сурхандарьинского вилоята Республики Узбекистан отсутствует гидрометрический пост на реке Амударья, а на наблюдательном посту Термез наблюдаются только горизонты воды. Из-за постоянного изменения поперечного сечения реки Амударья в створе наблюдательного поста нельзя однозначно определить расход воды. Отсутствие достоверной систематической информации с гидропостов реки Амударья на территории Таджикистана и Туркменистана (гидропосты Вахш, Керки, Келиф, Дарганата и др.), а также о фактических водозаборах по стволу реки создает значительную неопределенность, что затрудняет вододеление между странами региона. Поэтому возникает необходимость оценки и составления прогнозов изменения трансграничного стока реки Амударья в различные по водности годы и по сезонам года с учетом сложившейся ситуации неопределенности и недостаточности информации.

Основной объем поверхностных вод реки Амударья формируется в горных системах Таджикистана и Афганистана за счет атмосферных осадков холодного периода, многолетнее распределение которых в зоне формирования стока определяется особенностями синоптических процессов. Сток реки, концентрируясь в створе, совместно используется государствами Таджикистан, Туркменистан и Узбекистан, лишь малая часть используется Афганистаном. Область формирования стока характеризуется высокой изменчивостью гидрометеорологических факторов и их зависимостью от колебаний и изменения климата. Эти вопросы требуют специального изучения, актуальность которого возрастает в связи с антропогенными изменениями климата, вызванными ростом орошения и концентрации парниковых газов на планете.

Сложный характер колебания стока реки в зоне формирования, отсутствие информации о притоках и водозаборах определяет трудности в оценке и прогнозировании изменений трансграничного стока реки Амударья. Отсутствие досто-

верной систематической информации от гидропостов реки Амударья на территории Таджикистана и Туркменистана (гидропосты Вахш, Керки, Келиф, Дарганата и др.), а также о фактических водозаборах по стволу реки создает значительную неопределенность и недостаточность информации, что затрудняет вододеление между странами региона.

Норма годового стока — одна из самых важных гидрологических характеристик бассейна любой реки, так как она определяет потенциальные водные ресурсы данного района или бассейна реки и является исходной величиной при определении годового стока расчетных обеспеченностей.

На основе многолетних наблюдений на гидрометрической сети реки Амударья, а также данных водозаборов (около 30 пунктов) по стволу реки установлено, что в большинстве пунктов (27 %) продолжительность наблюдений превышает 20 лет, в 20 % — 10—20 и 44 % — менее 10 лет.

Створами наблюдения по стволу реки Амударья являлись гидропосты Гидрометслужбы Республик Центральной Азии, например, наблюдательный пост Термез, гидрометрические посты на Нурекском и Туямуюнском водохранилищах, гидропосты Керки, Дарганата, и Кипчак. Данные этих гидропостов в последнее время поступали нерегулярно и непостоянно, поэтому использовались методы приведения рядов наблюдения к многолетнему периоду с учетом цикличности колебания стока реки.

Были проанализированы ряды наблюдения попуска из Нурекского водохранилища, гидропостов Керки, Дарганата, Туямуюн и Кипчак, рассчитаны значения гидрологических характеристик среднегодового расхода Cp, коэффициент вариации Cv и коэффициент асимметрии Cs [1-4].

Анализируя данные о рядах наблюдений в различных организациях (Гидрометслужба, БВО «Амударья» и БУИСы), получающих воду из реки Амударья, необходимо отметить, что полные ряды наблюдения отсутствовали почти на всех гидропостах, пришлось ограничиться короткими рядами наблюдения расходов воды на гидропостах и использовать методы получения многолетних рядов наблюдения, учитывая особенности характеристик каждого гидропоста. Например, для приведения коротких рядов наблюдений к многолетнему периоду необходимо учесть циклические колебания стока в опорных пунктах. Водность рек в различных створах реки Амударья имеет ряд отличительных особенностей, поэтому приведение стока всех пунктов к одному календарному периоду невозможно. Средние многолетние величины стока для опорных пунктов рассчитаны с учетом тех лет, для которых восстановлены пропуски наблюдений путем досчета стока за отдельные дни и месяцы с целью сохранения непрерывности ряда. Поэтому в отдельных случаях они отличаются от фактических величин.

Ошибка расчета нормы годового стока для 52~% пунктов не превышает 10~%, остальных — 10-15~%- Таким образом, норма годового стока в большинстве пунктов вычислена с допустимой для практики точностью.

Расчет годового стока различной обеспеченности базировался на использовании аналитических кривых распределения. Коэффициент вариации в большинстве случаев рассчитывался методом моментов [5]. В некоторых случаях использован графоаналитический метод [2]. Относительная средняя квадратичная ошибка расчета коэффициентов вариации методом моментов для 72 % случаев не превышает 12 % и лишь в 15 % случаев более 17 %.

После обретения независимости государствами Центральной Азии очень трудно стало получать достоверную информацию по гидропостам и водозаборам

по стволу реки Амударья от соседних государств. В последние годы не имеется информации от гидрометслужб Таджикистана и Афганистана. В Гидрометслужбе Узбекистана отсутствует информация по гидропостам Келиф и Керки в стволе реки Амударья на территории Туркменистана. Точность информации по гидропостам и водозаборам в стволе реки Амударья на территории Узбекистана не отвечает современным требованиям. Все это обуславливает неопределенность информации и ограничивает точность прогноза изменения расхода воды по гидропостам.

В таких случаях построить водобалансовые модели для прогноза изменения стока и расхода воды в реке Амударья почти невозможно и прогноз изменения водных ресурсов на основе таких моделей не дает требуемой точности.

Характер изменения расхода воды в створах реки Амударья и анализ данных многолетнего наблюдения показывает возможность использования статистических методов прогноза водных ресурсов. В статистических методах изменение расхода или стока воды рассматривается как случайная функция, имеющая определенные статистические характеристики. Основой для определения расчетных значений годового стока воды являются среднегодовые расходы воды в исследуемом створе.

При отсутствии гидрометрических наблюдений величина среднего многолетнего стока определялась по интерполяции между опорными пунктами, для которых определены нормы стока.

Использована методика приведения коротких рядов к многолетнему периоду [3, 4]. Распределение годового стока рек по сезонам и месяцам обусловлено закономерностями внутригодового изменения основных составляющих водного баланса (осадков и испарения), которые являются зональными факторами формирования стока, а также влиянием зональных факторов: геоморфологического строения бассейна, гидрографических и гидрогеологических условий, характера почвогрунтов, растительного покрова, хозяйственной деятельности в бассейнах рек.

В результате анализа гидрологических рядов наблюдения оценены гидрологические характеристики гидропостов реки Амударья, которые приведены в табл. 1.

Как уже отмечалось, процессы изменения водных ресурсов зависят от большого числа факторов трех основных типов: хронологических (время года, декада, режимы работы промышленных предприятий и т.п.), метеорологических (температура окружающей среды, скорость ветра, влажность воздуха и т.п.), организационных мероприятий, проводимых в створах реки (строительство гидротехнических сооружений, водохранилищ) и мероприятий, проводимых с водопотребителями.

Построение математических моделей, адекватных реальным процессам изменения водных ресурсов предусматривает учет (в большей или меньшей степени) всех перечисленных ранее групп факторов.

Для выбора прогнозной модели изменения водных ресурсов необходимо большое количество рядов наблюдений.

Таблица 1 Гидрологические характеристики гидропостов реки Амударья

		Нурек		Термез			Керки			Дарганата			Туямуюн			Кипчак		
Годы	С _р 3 м /с	C_{v}	Cs	<i>С</i> _р	C_{v}	Cs	С _р 3 м/с	C_{v}	Cs	С _р 3 м/с	C_{v}	Cs	С _р 3 м/с	C_v	Cs	С _р 3 м/с	C_{v}	Cs
1980													1059	0,55	0,57	732	0,60	0,36
1981													987	0,69	0,50	703	0,66	0,85
1982													755	0,52	0,92	338	0,61	0,73
1983													869	0,58	0,81	479	0,57	0,22
1985													1044	0,70	0,80	671	0,74	0,62
1986													931	0,59	0,35	456	0,48	0,64
1987													544	0,87	1,21	304	0,78	0,96
1988	759	0,52	0,83										973	0,58	0,69	671	0,53	0,01
1989	581	0,53	0,96										1266	0,67	0,71	929	0,73	0,99
1990	669	0,45	1,48										587	0,70	0,64	486	0,13	0,47
1991	633	0,33	0,45										943	0,57	0,75	555	0,12	0,36
1992	715	0,58	0,43										1070	0,55	1,13	715	0,38	0,08
1993	724	0,48	0,62	269	0,24	0,77	1692	0,68	1,25	1771	0,68	1,39	1515	0,75	1,12	1200	0,72	0,72
1994	781	0,59	0,53	268	0,29	0,69	1895	0,76	1,19	1720	0,77	1,36	1214	0,78	1,13	954	0,76	0,96
1995	599	0,34	2,72	259	0,23	1,76	1315	0,65	1,26	1110	0,56	1,42	1326	0,69	1,33	984	0,67	1,60
1996	627	0,41	2,13	266	0,23	0,84	1539	0,59	1,24	1377	0,68	1,56	688	0,58	0,49	425	0,43	0,34
1997	596	0,37	1,84	234	0,22	0,40	1150	0,53	0,88	960	0,54	1,22	881	0,71	0,99	541	0,62	1,13
1998	546	0,67	1,9	269	0,49	0,23	563	0,46	0,97	401	0,32	0,37	532	0,63	0,29	285	0,54	0,18
1999	523	0,47	1,78	246	0,54	0,08	642	0,72	1,17	385	0,36	0,44	1501	0,81	0,75	1040	0,78	0,68
2000	498	0,77	2,08	182	0,33	0,18	881	0,65	0,97	523	0.65	1,61	786	0,00	0,87	482	0,50	0,45
2001	557	0,25	0,51	190	0,43	0,28	1529	0,71	0,75	535	0,77	1,11	370	0,46	-0,18	225	0,57	0,57

	Нурек			Термез		Керки			Дарганата			Туямуюн			Кипчак			
Годы	С _р 3 м /с	C_{v}	C_s	С _р	C_v	C_s	С _р 3 м /с	C_{v}	C_s	С _р 3 м /с	C_v	C_s	С _р 3 м /с	C_v	C_s	C_p $\frac{3}{M/c}$	C_v	Cs
2002	754	0,43	1,4	254	0,64	0,13	1647	0,73	1,12	1414	0,83	1,13	313	0,60	0,79	150	0,51	0,91
2003	721	0,52	0,48	252	0,43	0,64							758	0,70	0,75	509	0,74	0,73
2004				262	0,34	0,46							1029	0,84	0,91	839	0,75	0,93
2005				258	0,24	0,66							758	0,79	0,90	596	0,73	1,04
2006				255	0,54	0,24							1269	0,76	1,88	953	0,62	1,89
2007				253	0,46	0,43							682	0,60	0,54	472	0,44	0,32
2008				249	0,36	0,6							526	0,72	1,09	350	0,72	1,31

На основе анализа фактических данных по наблюдательному посту Термез, попусков Нурекского водохранилища, гидропостов Керки, Дарганата, Туямуюн и Кипчак, а также водозаборов, по имеющейся информации Аму-Сурханского БУИС и БВО Амударья за 1980-2008 гг., определены основные тенденции изменения расходов воды в годах различной водности. Характер изменения многолетних гидрографов водных ресурсов на гидропостах имеет периодический характер, с периодами повторения многоводных и маловодных лет по 10-12 лет до 2008 года. По результатам наблюдений, после 2000 года по настоящее время периоды повторения многоводных и маловодных лет уменьшились до 7-8 лет, например, после глубокого маловодных 2001-2002 годов, также маловодный год наблюдался и в 2008 году. Периодический характер изменения расхода воды наблюдается и внутри года, максимальные расходы наблюдаются в основном в летний период, а в осенне-зимний период – минимальные. На характер изменения гидрографа реки Амударья влияют построенные водохранилища, заборы воды на орошение. В створах реки Амударья построены водохранилища сезонного регулирования (Нурекское, Туямуюнское), которые, в основном, влияют на режим сезонного изменения гидрографа. Последние годы из-за отсутствия освоения новых орошаемых земель в государствах Центральной Азии годовые водозаборы в каналы оросительных систем, в основном, стабилизировались. Но в последние годы ухудшилась достоверность информации от соседних государств Центральной Азии по водозаборам и гидропостам. Например, в последние годы нет информации по гидропостам рек Вахш и Пяндж от гидрометслужб Таджикистана и Афганистана. Все водозаборы в Республике Узбекистан наблюдаются, но точность информации не отвечает требованиям. Очень мало наблюдаются возвратные воды, которые в основном учитываются по магистральным коллекторам. Все это обуславливает неопределенность информации о расходе воды и ограничивает точность прогноза изменения расхода по гидропостам. В таких случаях почти невозможно построить водобалансовые модели для прогноза изменения стока и расхода воды в реке Амударья и прогноз изменения водных ресурсов на основе таких моделей не дает требуемой точности.

Основной статистической моделью нормально распределенного гидрологического ряда годового стока является одномерная авторегрессионная модель, в которой следующее значение стока или среднегодового расхода воды определяется по формуле

$$Q_{k+1} = \overline{Q} + r(Q_k - \overline{Q}) + \sigma V_k , \qquad (1)$$

где \overline{Q} - среднее значение ряда, r - коэффициент автокорреляции между величинами стока в смежные годы, σ - среднеквадратическое отклонения, V_k - стандартная случайная величина. Здесь по двум аналогичным смежным годам вычисляются статистические характеристики.

Выражение (1) представляет собой прогноз на один шаг, т.е. по данным среднего значения расхода воды года аналога вычисляются значения на следующий год.

Методы расчета внутригодового распределения предусматривают определение величины распределения годового стока рек по сезонам, месяцам и декадам в различные по водности годы, различной вероятности превышения.

Методика расчетов зависит от объема материалов гидрометрических наблюдений за стоком реки. Существует методика расчетов при наличии материалов

многолетних наблюдений, при их недостаточности и при отсутствии таких данных

Методика расчета внутригодового распределения по сезонам и месяцам при наличии многолетних данных о расходах воды (более 20-25 лет) достаточно хорошо освещена в литературе и нормативных документах [3-6].

При недостаточности или отсутствии материалов наблюдений основным является метод, основанный на распределении стока рек-аналогов или по типовым районным схемам распределения стока в году. Наиболее надежное решение водо-хозяйственных задач обеспечивается при расчете внутригодового распределения, когда в качестве лимитирующего принимается период и сезон, на протяжении которых наблюдаются самые низкие расходы воды.

Нами использована методика определения расчетного внутригодового распределения стока для характерных по водности лет [3, 4]. Внутригодовое распределение стока представляется в виде хронологического изменения расходов по месяцам при наличии данных гидрометрических наблюдений за период не менее 15-20 лет и определяется методом компоновки сезонов. Метод компоновки сезонов — основной способ расчета календарного внутригодового распределения стока. По методу компоновки определяется межсезонное и внутрисезонное распределение стока.

Методы прогноза распределения изменения водных ресурсов основываются на использовании следующего выражения

$$Q_{k+1} = a_1 Q_k + a_2 Q_{k-1} + \dots + a_n Q_{k-n} + b_1 V_k + b_2 V_{k-2} + \dots + b_m V_{k-m},$$
(2)

где Q_k , Q_{k-1} ,..., Q_{k-n} – значение фактического ряда наблюдения предыдущих п-интервалов, σ – среднеквадратическое отклонение года аналога, V_k – основной фактор, влияющий на изменение водных ресурсов (например, температура), a_i , i=1,...,n; b_i , i=1,...,m – коэффициенты, определяемые методами идентификации модели и по наблюденным данным.

По (2) прогноз осуществляется на один шаг по данным Q_k , Q_{k-1} , ..., Q_{k-n} предыдущих наблюдений и по данным основного фактора V_k . Определение основного фактора, влияющего на изменение водных ресурсов в реке очень трудно определить, поэтому прогноз по (2) очень труден, т.е. для определения коэффициентов a_i , i=1,...,n; b_i , i=1,...,m т недостаточны данные наблюдения. Поэтому используем метод скользящего - среднего - значения на определенный период. Для внутригодового распределения стока нами использован метод скользящего — среднего - значения на определенный период

$$Q_{k+1} = \frac{(Q_k + Q_{k-1} + \dots + Q_{k-n})}{n} + \sigma V_k , \qquad (3)$$

где Q_k , Q_{k-1} , ..., Q_{k-n} , - значение фактического ряда наблюдения предыдущих п-интервалов, σ - среднеквадратическое отклонение года аналога, V_k - стандартная случайная величина. Здесь по данным наблюдения выбирается год по обеспеченности водных ресурсов, выбирается аналог и для него вычисляются статистические характеристики стока, среднее значение среднеквадратического отклонения, и далее прогноз осуществляется на следующий период по формуле (3).

Разработка математических моделей, адекватных реальным процессам изменения водных ресурсов, предусматривает учет всех перечисленных типов факторов.

На основе вышеизложенного можно сделать следующие выводы:

1. Основной статистической моделью нормально распределенного гидрологического ряда годового стока является одномерная авторегрессионная модель, в которой следующее значение стока или среднегодового расхода воды определяется по формуле (1).

При недостаточности или отсутствии материалов наблюдений используется метод, основанный на распределении стока рек-аналогов или по типовым районным схемам распределения стока в году. Наиболее надежное решение водохозяйственных задач обеспечивается при расчете внутригодового распределения, когда в качестве лимитирующего принимается период и сезон, на протяжении которых наблюдаются самые низкие расходы воды.

- 2. Методы прогноза распределения изменения водных ресурсов основываются на использовании выражения (2), по которому прогноз осуществляется на один шаг по данным Q_k , Q_{k-l} , ..., Q_{k-n} п предыдущих наблюдений и по данным основного фактора V_k . Основной фактор, влияющий на изменение водных ресурсов реки очень трудно определить, поэтому прогноз по (2) очень труден, т.е. для определения коэффициентов a_i , i=1,...,n; b_i , i=1,...,m недостаточны данные наблюдения.
- 3. Внутригодовое распределение стока представляется в виде хронологического изменения расходов воды по месяцам, при наличии данных гидрометрических наблюдений за период не менее 15-20 лет определяется методом компоновки сезонов. Метод компоновки сезонов основной способ расчета календарного внутригодового распределения стока. По методу компоновки определяется межсезонное и внутрисезонное распределение стока.

Нами для внутригодового распределение стока использован метод скользящего – среднего - значения на определенный период (3).

Здесь по данным наблюдения выбирается год по обеспеченности водных ресурсов, выбирается аналог и для него вычисляется статистические характеристики стока, среднее значение расхода воды и его среднеквадратическое отклонение.

По данному методу нами рассчитаны прогнозные изменения расходов воды на основных водозаборах и гидропостах реки Амударья на многоводный, средневодный и маловодные годы. На рис. 1 приведены изменение горизонтов и рассчитанные расходы на наблюдательном посту Термез в годы различной водности. В табл. 2-4 приведены, на основе анализа многолетних данных, возможные изменения расходов воды по гидропостам и основным водозаборам реки Амударья. Значения водозаборов определены на основе анализа многолетних данных водозаборов в годах различной водности.

Рис. 1. Горизонты и расходы воды на наблюдательном посту Термез

 Таблица 2

 Прогнозные изменения расходов воды на основных водозаборах и гидропостах реки Амударья в многоводный год

50 % обеспеченность Q =2000 ${\rm m^{3}}/{\rm c}$ Максимальный расход ${\rm Q_{max}}$ =7100 ${\rm m^{3}}/{\rm c}$ на НП Термез

	По	НП Т	ермез	n Vana	КМ	ПрЭс	L'on.	Dagulian	АБМ	Папра	ПонТуд	D2Vanaa	DDVana	ГПКипча
Месяц	Де	Уро-	Pac-	к. Кара-	KIVI	ДрЗа б	Кер-	РасчКер-	К	Дарга-	ПопТуя-	ВЗХораз	ВЗКара	
	К	вень	ход	кум	N	U	ки	КИ	V	ната	муюн	M	К	к
	I	182	1270	220	100	30	880	860	150	710	200	0	25	120
Январь	II	175	1250	230	140	20	860	810	190	620	200	0	25	120
	III	178	1265	220	145	20	830	800	160	640	200	0	25	120
Фев-	I	180	1350	230	145	20	900	880	160	720	400	0	29	240
	II	180	1340	270	140	20	850	900	140	760	480	27	25	240
раль	III	178	1250	320	145	40	820	800	120	680	680	130	60	350
	I	185	1290	320	120	40	750	720	80	640	880	230	135	353
Март	II	230	1660	300	120	40	900	890	80	810	1320	310	240	353
	III	235	1880	270	140	50	1000	970	50	920	1350	290	445	524
	I	232	1750	270	160	50	900	880	50	830	880	190	530	447
Апрель	II	218	1600	320	170	60	1000	980	100	880	750	80	370	257
	III	245	2360	400	180	60	1520	1400	120	1280	720	80	260	257
	I	290	2900	440	200	50	2200	2150	100	2050	1180	220	209	506
Май	II	292	3550	480	210	60	2700	2570	120	2450	1570	300	450	598
	III	295	3700	500	200	60	2800	2710	160	2550	1520	295	525	690
	I	310	4230	550	200	50	3300	3120	220	2900	14200	270	620	560
Июнь	II	348	4530	580	200	70	3400	3380	280	3100	2040	270	645	820
	III	378	5300	600	200	70	3980	3850	300	3550	2160	380	670	1160
	I	385	6860	600	200	70	5600	4950	300	4650	2600	380	700	1220
Июль	II	390	7100	600	200	70	5800	5760	300	5460	2700	370	780	1520
	III	370	5850	600	180	70	4800	4760	280	4480	2340	340	740	1330
	I	365	4880	500	200	80	3800	3750	270	3480	2190	340	730	1065
Август	II	330	4350	500	160	70	3280	3110	260	2850	2170	330	590	1040
	III	300	4100	500	160	70	3320	3170	220	2950	1820	275	250	940
Corr	I	280	3500	400	160	60	2800	2760	100	2660	1110	200	85	570
Сен- тябрь	II	272	2620	400	150	60	1800	1760	80	1680	950	130	15	450
ачокт	III	260	2420	310	150	60	1560	1510	60	1450	850	90	20	480

	Де	НП Т	ермез	к. Кара-	КМ	ПрЭс	Кер-	РасчКер-	АБМ	Попро	ПопТуя-	ВЗХораз	ВЗКара	ГПКипча
Месяц	к	Уро- вень	Рас- ход	к. Кара- кум	KIVI	ДрЗа б	ки	ки	K	Дарга- ната	муюн	М	к	К
0	I	230	1620	300	120	40	1070	1020	60	960	700	85	30	480
Ок- тябрь	II	220	1450	310	140	40	910	960	50	910	480	60	30	340
адокт	III	214	1280	310	130	40	780	750	50	700	480	40	30	390
	I	212	1240	280	130	35	710	680	0	680	420	25	30	335
Ноябрь	II	216	1310	270	130	35	810	760	0	760	420	5	40	330
	III	205	1180	260	130	40	681	640	0	640	460	0	140	250
	I	195	1150	250	110	30	670	640	20	620	460	0	200	275
Декабрь	II	208	1280	230	110	20	900	940	80	860	480	0	200	250
	III	204	1200	230	120	20	800	780	80	700	480	0	60	240

Таблица 3 Прогнозные изменения расходов воды на основных водозаборах и гидропостах реки Амударья в средневодный год $50~\%~обеспеченность~Q=1700~m^3/c.~ Максимальный расход~Q_{max}=4100~m^3/c~ на НП Термез$

Маади	Де	Терм	иез	к. Кара-	КМК	ПъЭоб	I/ om vove	АБМК	Дарга-	ПопТуя-	ВЗХораз	ВЗКара	ГПКипч
Месяц	к	Уровень	Расход	кум	KIVIK	ДрЗаб	Керки	ADMIN	ната	муюн	M	к	ак
	I	182	1120	220	110	30	640	30	480	200	0	25	120
Январь	II	185	1230	220	130	20	680	50	520	200	0	25	120
	III	190	1280	230	130	20	630	75	420	200	0	25	120
Фев-	I	190	1300	250	140	20	620	110	390	400	0	25	340
	II	205	1290	260	135	20	650	100	380	480	30	25	340
раль	III	210	1255	280	130	40	670	110	380	680	130	60	350
	I	202	1200	300	130	40	700	50	570	880	230	130	360
Март	II	215	1350	300	120	40	875	50	690	1320	310	240	360
	III	230	1400	300	140	50	850	50	720	1350	290	445	520
	I	246	1485	400	155	50	850	50	780	880	190	430	320
Апрель	II	252	1530	400	180	60	1120	100	980	750	80	370	280
	III	284	1750	400	180	60	1135	100	1010	720	80	260	320
Май	I	290	2580	420	180	50	1840	140	1590	1180	220	220	480
	II	318	3210	550	180	60	2290	160	1990	1570	300	450	620

Месяц	Де	Терм	мез	к. Кара-	КМК	ПъЭоб	I/onver	АБМК	Дарга-	ПопТуя-	ВЗХораз	ВЗКара	ГПКипч
месяц	к	Уровень	Расход	кум	KIVIK	ДрЗаб	Керки	ADMIN	ната	муюн	M	к	ак
	III	325	3407	480	180	60	2890	180	2480	1520	295	525	660
	I	322	3010	470	180	50	3270	180	2820	1420	270	620	540
Июнь	II	358	4120	520	180	70	3220	180	2820	2040	270	645	820
	III	352	3980	520	180	70	3280	200	3020	2160	380	670	1160
	I	350	3870	520	180	70	3050	240	2710	2600	380	700	1220
Июль	II	345	3620	520	180	70	2850	280	2540	2700	370	780	1520
	III	307	2525	520	180	70	2900	260	2450	2440	340	740	1330
	I	302	2467	500	180	80	2260	260	2140	2190	340	730	1065
Август	II	300	2194	500	170	70	1380	260	1310	2170	330	590	1040
	III	282	2100	460	160	70	1340	200	1220	1820	275	250	940
Сен-	I	244	1684	420	120	60	1050	160	880	1110	200	85	570
	II	254	1575	380	130	60	980	130	880	950	130	15	450
тябрь	III	214	1284	380	110	60	710	100	620	850	90	20	480
Ок-	I	195	980	300	100	40	620	100	540	700	85	30	480
	II	200	889	300	100	40	600	90	480	480	60	30	340
тябрь	III	199	942	300	100	40	640	100	500	480	40	30	390
	I	196	951	300	100	35	630	100	480	420	25	30	335
Ноябрь	II	191	984	300	100	35	580	100	510	420	5	40	330
	III	193	1107	300	100	40	680	100	570	460	0	140	250
По	I	189	1173	260	100	30	840	100	730	460	0	200	275
Де-	II	193	1209	240	100	20	920	80	820	480	0	200	250
кабрь	III	186	1325	220	100	20	930	80	820	480	0	60	240

Таблица 4 Прогнозные изменения расходов воды на основных водозаборах и гидропостах реки Амударья в маловодный год $50~\%~oбеспеченность~Q=1300~m^3/c.~Maксимальный расход~Q_{max}=2500~m^3/c~ на HП Термез$

М	Де	Терм	иез	к. Кара-	ICNAIC	П., Э. б	10	AFMIC	Дарга-	ПопТуя-	ВЗХораз	ВЗКара	ГПКипча
Месяц	К	Уровень	Расход	кум	КМК	ДрЗаб	Керки	АБМК	ната	муюн	M	к	К
	I	186	865	150	140	20	530	20	490	135	5	120	0
Январь	II	176	854	120	120	10	530	50	460	136	5	80	20
	III	174	812	150	140	10	480	70	360	132	5	90	30
Фев-	I	176	833	120	130	10	520	100	350	116	5	100	0
-	II	174	794	120	110	10	510	100	360	253	5	100	145
раль	III	164	825	110	100	30	560	100	420	877	170	180	350
	I	171	703	125	110	30	420	40	380	1046	240	360	395
Март	II	173	704	150	130	30	380	50	360	1074	240	370	313
	III	169	694	180	100	30	380	40	350	694	130	250	300
	I	166	700	200	120	30	370	50	350	433	50	80	290
Апрель	II	209	890	220	130	30	400	100	320	290	30	80	185
	III	212	869	260	120	30	420	110	330	222	30	120	80
	I	238	935	230	140	30	360	140	310	195	30	120	50
Май	II	266	1100	260	140	30	630	160	450	162	30	60	60
	III	316	1839	250	155	30	1330	180	1050	629	80	380	130
	I	321	1829	300	170	40	1580	180	1250	769	125	463	220
Июнь	II	347	2500	280	180	40	1980	190	1650	886	220	380	285
	III	323	2086	300	210	40	1430	200	1450	975	245	320	290
	I	320	1874	290	180	40	1370	240	1250	591	160	210	195
Июль	II	326	1968	260	190	40	1370	280	950	811	165	280	330
	III	307	1701	280	180	40	1120	260	920	776	180	220	330
	I	321	1636	260	190	40	1110	260	920	592	120	155	280
Август	II	316	1854	270	200	40	1220	260	960	427	105	120	180
	III	275	1299	240	180	40	820	200	760	481	100	120	220
Соп	I	246	1174	250	190	40	750	140	660	440	80	80	220
Сен-	II	209	845	190	150	30	650	130	560	351	70	85	145
тябрь	III	189	698	170	140	30	460	100	420	301	70	94	125

Месяц	Де	Терм	иез	к. Кара-	кмк	ДрЗаб	Керки	АБМК	Дарга-	ПопТуя-	ВЗХораз	ВЗКара	ГПКипча
итесяц	К	Уровень	Расход	кум	KIVIK	дрэао	керки	ADMIX	ната	муюн	M	к	к
Ок-	I	167	619	270	130	30	320	100	320	246	50	60	90
тябрь	II	162	603	300	110	30	280	90	210	196	30	40	80
адокт	III	160	586	300	110	30	270	100	200	194	20	40	95
	I	160	623	270	110	20	240	100	180	194	20	28	95
Ноябрь	II	170	694	270	110	20	280	100	180	130	20	30	70
	III	164	754	230	120	20	280	100	180	130	10	25	60
	I	155	598	150	120	20	310	100	200	155	10	25	60
Декабрь	II	160	608	150	110	20	350	80	240	102	5	25	60
	III	169	774	150	110	20	365	80	250	102	5	25	60

Литература

- 1. Крицкий С.Н., Менкель М.Ф. Водохозяйственные расчеты. Л.: Гидрометеоиздат, 1952.-642 с.
- 2. Крицкий С.Н., Менкель М.Ф. Гидрологические основы управление водохозяйственными системами. – М.: Наука, 1982. – 524 с.
- 3. Рождественский А.В., Чеботарев А.И. Статистические сетолы в гидрологии. Л.: Гидрометеоиздат, 1974.-356 с.
- 4. Пособие по определению расчетных гидрологических характеристик. Л.: Гидрометеоиздат, 1984. 448 с.
- 5. СНиП 2.0114-83 Определение расчетных гидрологических характеристик. М.: Госстрой, 1984 г.
- 6. Международное руководство по методам расчета основных гидрологических характеристик. Л.: Гидрометеоиздат, 1984. 128 с.

УДК 631.67.03

Использование сточных вод на орошение - один из путей смягчения дефицита оросительной воды в условиях Узбекистана

Маматов С., Умаров Х.

САНИИРИ им. В.Д. Журина

Растущее снижение водоносности рек, вызванное глобальными изменениями климата с одной стороны и изменение естественных режимов стока трансграничных рек, как следствие водной политики соседних стран с другой стороны вынуждает Узбекистан на поиск различных путей преодоления дефицита водных ресурсов на орошаемых полях страны. Географическое расположение Узбекистана предопределило так, что основная часть (до 80 %) используемых Узбекистаном водных ресурсов поступает из соседних стран. Искусственное регулирование стока трансграничных рек привело к тому, что уже сегодня на огромных площадях орошаемых земель Узбекистана ощущается нехватка водных ресурсов в вегетационный период. Так, дефицит водных ресурсов в вегетационный период в бассейне реки Сырдарья иногда достигает до 2,5 км³/год, в бассейне реки Амударья 1,5-3 км³/год [2].

С другой стороны, быстрые темпы роста населения Узбекистана требуют увеличения объемов сельскохозяйственной продукции, что возможно только на основе интенсификации производства. Но успешное решение этого вопроса в условиях нашей страны всегда упирается в нехватку водных ресурсов (оросительной