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Abstract: The main objective of this study is to investigate alternative climate data sources for
long-term hydrological modeling. To accomplish this goal, one weather station data set (WSD) and
three grid-based data sets including three types of precipitation data and two types of temperature data
were selected according to their spatial and temporal details. An accuracy assessment of the grid-based
data sets was performed using WSD. Then, the performances of corrected data combination and
non-corrected grid-based precipitation and temperature data combinations from multiple sources on
simulating river flow in the upstream portion of the Amu Darya River Basin (ADRB) were analyzed
using a Soil and Water Assessment Tool (SWAT) model. The results of the accuracy assessments
indicated that all the grid-based data sets underestimated precipitation. The Asian Precipitation
Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources
(APHRODITE) precipitation data provided the highest accuracy (correlation coefficients (CF) > 0.89,
root mean square error (RMSE) < 41.6 mm), followed by the CRUNCEP reanalysis data (a combination
of the CRU TS.3.2 data and the National Centers for Environmental Prediction (NCEP) reanalysis
data) (CF > 0.5, RMSE < 58.1 mm) and Princeton’s Global Meteorological Forcing Dataset (PGMFD)
precipitation data (CF > 0.46, RMSE < 62.8 mm). The PGMFD temperature data exhibited a higher
accuracy (CF > 0.98, RMSE < 7.1 ◦C) than the CRUNCEP temperature data (CF > 0.97, RMSE < 4.9 ◦C).
In terms of the simulation performance, the corrected APHRODITE precipitation and PGMFD
temperature data provided the best performance. The CF and Nash-Sutcliffe (NSE) coefficients in
the calibration and validation periods were 0.96 and 0.92 and 0.93 and 0.83, respectively. In addition,
the combinations of PGMFD temperature data and APHRODITE, PGMFD and CRUNCEP
precipitation data produced good results, with NSE ≥ 0.70 and CF ≥ 0.89. The combination
of CRUNCEP temperature data and APHRODITE precipitation produced a satisfactory result,
with NSE = 0.58 and CF = 0.82. The combinations of CRUNCEP temperature data and PGMFD
and CRUNCEP precipitation data produced poor results.

Keywords: climate data sources; different combinations of multisource data; river flow simulation;
SWAT model
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1. Introduction

One of the challenges in modeling watershed hydrology is obtaining accurate weather input
data [1,2], which are generally one of the most important drivers of watershed models [3,4]. Spatial and
temporal variability are key characteristics of hydrological processes [5]. In many instances, distributed
hydrological models require daily distributed meteorological data to simulate the hydrological cycle.
However, some modeling scenarios require hourly or monthly data. Lacks of data and inaccuracies
in data have the largest impact on model simulations [6,7]. Distributed hydrological models require
spatially distributed, long-term, continuous data to simulate the impact of climate change and
management practices on hydrological processes. However, conventional weather stations are often
sparsely distributed and cannot fully represent the climate conditions across a watershed, particularly
if large hydro climatic gradients exist [8–10]. In addition, weather station records often do not cover
the proposed simulation period or contain gaps.

To solve this problem, some researchers have used grid-based data (e.g., atmospheric model
analysis or reanalysis outputs, radar data and gridded station observations, i.e., observations that
have been interpolated to a regular grid). One of the most common ways of determining quality is to
assess the accuracy of the data source and test its performance in a hydrologic model, or uncertainty
assessments of the potential impacts of weather inputs for model prediction using latent variables [11],
simultaneous data assimilation and parameter estimation [12] and using probabilistic techniques such
as Bayesian Model Averaging (BMA) or the Integrated Bayesian Uncertainty Estimator (IBUNE) [13,14].
Most studies have focused on evaluating the performance of grid-based precipitation data in simulating
hydrologic processes [15–25], while others have focused on evaluating the performances of different
parameters in one data set in simulating hydrologic processes [26–29]. Some studies have evaluated
the respective performances of different variables associated with multisource grid-based data in
hydrologic modeling [30,31]. However, nearly 80% of water resources in the current region of interest
are generated from snow and glacier melt. Thus, the impact of the accuracy of temperature data on
runoff modeling in this region cannot be neglected. In addition, different types of data sets have
varying accuracy levels across different regions with various weather station distributions. Therefore,
alternative climate data sources must be identified in data-scarce regions [32].

The hydrologic regime of the Amu Darya River Basin (ADRB) is complex and vulnerable to
climate change [8]. Water diversion for agricultural, industrial and domestic users has significantly
reduced flows in downstream regions [33], resulting in severe ecological damage [34]. The scarcity of
meteorological data remains a major hindrance in using hydrologic models in this region. Some studies
have been designed to overcome these data limitations. Monthly reanalyzed data from the Climate
Research Unit (CRU TS.3.2) have been used in numerous studies [9,33,35,36]. Precipitation estimation
from remotely sensed information using artificial neural networks (PERSIANN) precipitation
products [8], the Willmott archived data set, the GSMaP satellite-driven data set [37], the global
climatology precipitation product (GPCP), the Global Precipitation Climatology Center (GPCC) [38]
and ERA-15 data [39] have been used to simulate the influence of climate change on water resources in
this region.

However, most of these studies have used data sets on monthly time scales [9,33,35,36],
used daily time steps without correction for short-term simulations [8,16,20,22,37,40,41] or evaluated
the performances of different variables associated with multisource gridded data in hydrologic
modeling [23,24]. In addition, previous studies focused on evaluation of the precipitation data and
neglect the temperature data evaluation. Thus, it is essential to identify alternative climate data sources
on a daily time step and evaluate their effectiveness for long-term hydrological modeling. To achieve
this goal, one weather station data set (WSD) and three types of data sets with daily time steps over
long-term periods were tested in this study to simulate river flow using the Soil and Water Assessment
Tool (SWAT). Thus, the major goal of this study is to investigate alternative climate data sources for
improving the performance of distributed hydrologic models and to provide a practical basis for
further analysis on hydrological processes and other topics. Therefore, we focused on a data accuracy
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assessment and performance evaluations but did not consider the simulation uncertainty caused by
weather inputs due to the length of the paper. To achieve this goal, the Central Asia Temperature
and Precipitation Data (CATPD), Asian Precipitation Highly Resolved Observational Data Integration
Towards the Evaluation of Water Resources (APHRODITE) data, Princeton’s Global Meteorological
Forcing Data (PGMFD) and CRUNCEP reanalysis data (a combination of the CRU TS.3.2 monthly data
and the National Centers for Environmental Prediction (NCEP) reanalysis data) were selected due to
their spatial and temporal representativeness of the processes being measured. Our first objective was
to evaluate the accuracy of grid-based data. The second objective was to investigate the performances
of corrected data combination and non-corrected grid-based data combinations of precipitation and
temperature data from multiple sources on simulating river flow in the upstream portion of the
Amu Darya River Basin (ADRB), and we selected the suitable combinations for simulating river flow
in this region.

2. Materials

2.1. Study Area

The watershed is located between 38.66◦ N–39.86◦ N and 70.28◦ E–73.71◦ E and covers an area
of 19,638 km2. This area is a mountainous area, and the elevation ranges from 1294 m to 7198 m
(Figure 1). The drainage area includes land cover types such as forest (3.64%), pasture (3.04%),
agricultural land (0.17%), snow and ice (15.53%), bare land (13.39%) and sparsely vegetated area
(64.23%) (Figure 1). The main soil types in this region are sandy soil (29.32%), mollic leptosols (21.27%),
cumulic anthrosols (19.23%), haplic kastanozems (17.03%) and calcic chernozems (13.14%). In general,
the climate in this region exhibits continental and subtropical features. The average annual temperature
ranges from −7.7 ◦C to 8.3 ◦C, and the annual average precipitation is 739 mm (in the period of
1965–2007). Within the mountain ranges, the climate differs across different elevation bands. In this
study, the elevations of the Lyairun, Daraut-Kurgan, Sarytash and Fedchenko Glacier stations are
2008 m, 2470 m, 3153 m, and 4169 m, respectively. The temperature decreases with increasing elevation,
whereas precipitation presents different trends in different elevation bands and in different aspects.
More than 80% of the precipitation occurs from October to May of the following year (Figure 2).
The maximum and minimum precipitation totals occur in May and August, whereas the peak and low
flows occur in August and March, respectively (Figure 2). The main water resources of this region are
precipitation, snowmelt and glacier melt.
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Figure 2. Long-term monthly averages of precipitation and temperature at four stations (a) long-term
monthly averages of precipitation and temperature at four stations; (b) long-term monthly averages of
stream flow and precipitation (Ly, Dk, Sa, and FG are Lyairun, Daraut-Kurgan, Sarytash and Fedchenko
Glacier stations, respectively).

2.2. Data

2.2.1. Climate Data Sources

Climate data sources are primarily divided into point-based (weather stations) and grid-based
sources, such as atmospheric model analysis or reanalysis outputs, radar data and gridded station
observations, i.e., observations that have been interpolated to a regular grid. To identify alternative
data sources for use in long-term hydrological modeling, available climate data were collected from
different sources (Table 1).

Three types of WSD can be used in the ADRB. These include CATPD at the monthly time scale, the
Global Summary Of the Day (GSOD) and the Global Historical Climatology Network-Daily (GHCND).
The latter two data sets can be obtained from The National Climatic Data Center for everywhere in the
world. Although all of these data sets provided precipitation, maximum temperature and minimum
temperature data, the GSOD and GHCND do not provide data in our study area until 1973, and no
data exists between 1994 and 2005. In addition, there is a lot of missing data for the available periods.
The CATPD from 1965 to 1990 was selected for this study due to its completeness. These data provided
data from four weather stations (shown in Figure 1) in our study area. The CATPD can only be used to
evaluate the accuracy of grid-based data because the SWAT model requires weather data at the daily
scale for modeling river flow.

A meteorological reanalysis is a meteorological data assimilation project, which aims to assimilate
historical observational data spanning an extended period using a single consistent assimilation
(or “analysis”) scheme throughout. The reanalysis data sets listed in Table 1 can be used in hydrological
modeling. However, different types of data sets have different spatial and temporal resolutions and
varying accuracy levels across different regions because of the variety of data sources and assimilation
methods used. In this paper, according to the spatial and temporal resolutions of the data, the PGMFD
and CRUNCEP reanalysis data sets were chosen for hydrological modeling, and they were evaluated
and tested further in Sections 4.1 and 4.3. Both of them provided daily precipitation, maximum and
minimum temperature, daily total solar radiation, daily average relative humidity and daily average
wind speed for SWAT model construction. However, only daily precipitation, maximum temperature
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and minimum temperature were tested, and other parameters were simulated using the SWAT weather
generator due to the lack of measured relative humidity, wind speed and solar radiation data.

Table 1. Sources of climate data.

Data Set Period Resolution (◦) Temporal Region

Weather station data

CATPD 1879–2003 - monthly Central Asia
GSOD 1901–2016 - daily Global
GHCND 1763–2016 - daily Global

Reanalysis data

ERA-15 1979–1993 2.5 6 hourly and monthly Global
NCEP/NCAR 1948–present 2.5 6 hourly and daily Global
JRA-25 1979–2004 1.125 6 hourly and daily Global
MERRA 1979–present 1/2 × 2/3 hourly Global
CFSR 1979–present 0.5 hourly Global
CRUNCEP 1948–present 0.5 6 hourly data Global
ERA-Interim 1979–present 0.75 6 hourly and daily Global
ERA-40 1957–2002 2.5 6 hourly and monthly Global
PGMFD 1948–2010 0.5 daily Global
GLDAS 2000–present 0.25 3 hourly Global
Wilmott 1900–2008 0.5 monthly Global
WFDEI 1979–2012 0.5 3 hourly and daily Global

Gridded data

APHRODITE 1951–2007 0.25 daily Monsoon Asia
TRMM 1998–present 0.25 3 hourly Near global
PERSIANN 2000–present 0.25 3 hourly Near global
GPCP 1997–present 1.00 daily Global
CMORPH 2002–present 0.25 3 hourly Global
GSMaP 2002–present 0.1 hourly 60◦ N–60◦ S
WFD 1958–2001 0.5 3 hourly Global

There are seven types of gridded data sets, as shown in Table 1. Only the APHRODITE data has
the high spatial and temporal resolutions needed in this analysis. Therefore, the APHRODITE data set
was selected as an alternative data source for hydrological modeling.

2.2.2. Other Data for Model Construction

A SWAT model requires spatial data such as a digital elevation model (DEM), a land use/cover
map and a soil map. The following were used to construct the SWAT model: a DEM with a 90 m
resolution [42]; land use/cover maps from the 1970s and 2005 with a 1000 m resolution, and the
Harmonized World Soil Database (HWSD) soil map with a scale of 1:5,000,000 [43]. The land
use/cover maps were obtained from the Central Asia land cover change data set of the “973 Program”,
describing the response of large-scale land use/cover change to global climate change.

In addition to the spatial data and daily weather data mentioned in Section 2.2.1, a SWAT model
also requires physical and chemical soil properties such as moist bulk density, depth from the soil
surface to the bottom of the soil, clay content, silt content and sand content. River flow data on a certain
time scale were required for model calibration and validation.

The HWSD provides soil properties such as the depths of soil layers, clay content, silt content,
sand content and so on for each soil layer. Other properties, such as the available water capacity
and saturated hydrologic conductivity, were calculated using Soil-Plant-Air-Water (SPAW) software
developed by the U.S. Department of Agriculture. Monthly average river flow data from 1965 to 1978
and 1979–1985 from the Global Runoff Data Center (GRDC) were used for calibration and validation.
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3. Methodology

3.1. Accuracy Assessments of the Grid-Based Data Sets

Precipitation and temperature data from 1965 to 2007 were extracted from the grid-based data sets
corresponding to the four weather stations using the nearest neighbor interpolation method. There are
other interpolation methods such as bilinear interpolation, inverse distance-weighted method [44,45].
The nearest neighbor method is the most simple method to extract point values from raster. In order to
save the computing power, the nearest neighbor method was used in this study. In further study the
impact of different interpolation methods on the extracted data accuracy will be discussed. An accuracy
assessment was conducted by comparing the annual cycles and statistical box plots of grid-based
data sets with WSD based on indicator criteria. The annual cycle is useful for evaluating the seasons
throughout the year, and it is normally estimated from observational data or model output by taking
the average of each month for a given number of years [46]. A box plot with median, upper quartile
(75th percentile), lower quartile (25th percentile), minimum and maximum values is used to display
the quartile distribution of the data.

The following indicator criteria were applied to evaluate the grid-based data sets based on
WSD: the linear correlation coefficient (CF), root mean square error (RMSE), mean absolute error
(MAE), multiplicative bias (MBias) and Nash-Sutcliffe Coefficient (NSE) [32,45,47]. The mathematical
expressions of these criteria are as follows:

CF =
∑n

i=1 [(xi − x) (yi − y)]√
∑n

i=1 [(xi − x)2]∑n
i=1 [(yi − y)2]

, (1)

RMSE =

√
1
n ∑n

i=1 (xi − yi)
2, (2)

MAE =
1
n

n

∑
i=1
|(xi − yi)| (3)

MBias =
∑n

i=1 xi

∑n
i=1 yi

(4)

NSE = 1− ∑n
i=1 (xi − yi)

2

∑n
i=1 (xi − y)2 (5)

where x and y are the gridded and stationary data sets (WSD), respectively. The CF is used to
assess the agreement between the grid-based data set and the WSD. The range of CF values is between
−1 and +1. A CF value of exactly +1 indicates a perfect positive fit, while a value of exactly−1 indicates
a perfect negative fit. The MAE was used to represent the average magnitude of the error. The RMSE,
which assigns a larger weight to larger errors relative to the MAE, was used to measure the average
error magnitude. The optimal values of the RMSE and MAE are 0. The MBias is the ratio of grid-based
data to WSD. A perfect estimation would result in an MBias value of 1. Underestimation will lead
to values less than 1 and overestimation to values greater than 1 [48]. NSE was used to describe
the goodness of fit of the gridded data sets and the observed data set. The range of NSE is −∞~1,
with 1 being the best value.

3.2. Data Correction and Combinations

Due to the lack of daily WSD, the APHRODITE precipitation data and the maximum and
minimum temperatures of the PGMFD were selected and corrected for model construction. The simple
and widely used linear bias correction [49] method was used to correct the precipitation and
temperature data. The APHRODITE daily precipitation amounts P are transformed into P* such
that P* = aP. The variable a is a scaling parameter equal to O/P, where O and P are monthly mean



Water 2016, 8, 441 7 of 18

values of precipitation based on WSD and APHRODITE data, respectively. The monthly scaling factor
is applied to each uncorrected daily time series. The maximum and minimum temperatures of PGMFD
were also corrected using the linear bias correction method. The scaling parameter for temperature is
b = Ot− T, where Ot and T are monthly mean WSD and PGMFD maximum or minimum temperatures.
The monthly scaling factor is applied to each uncorrected time series. For daily time series from 1991
to 2007, for which no observed data were used for correction, the long-term average monthly mean
correction factors were applied to uncorrected daily time series of each month.

To investigate the performances of corrected data combination and non-corrected precipitation
and temperature data combinations from multiple sources on simulating river flow in the study area,
the following combinations were used. CAP is the combination of corrected APHRODITE precipitation
and PGMFD temperature data. The six combinations include the combination of non-corrected
APHRODITE and PGMFD temperature data (AP), the combination of precipitation and temperature
from the PGMFD data set (PP), the combination of CRUNCEP precipitation and PGMFD temperature
data (NP), the combination of APHRODITE and CRUNCEP temperature data (AN), the combination
of PGMFD precipitation and CRUNCEP temperature data (PN) and the combination of precipitation
and temperature from the CRUNCEP data set (NN). The AP, PP and NP models were used to evaluate
the suitability of the precipitation dada to the model and the model’s sensitivity to the accuracy of the
precipitation data. The AN, PN and NN models were used to analyze the suitability of temperature
data and the sensitivity of the model to the accuracy of temperature data.

3.3. The SWAT Hydrological Model

The SWAT model is a physically based, temporally continuous, semi-distributed hydrology model
that can operate at a daily time step. It can simulate complex hydrological processes and predict the
impacts of climate change and land management practices on water, sediment, and agriculture chemical
yields in large, complex watersheds with varying soils, land uses, and management conditions over
long periods [50,51]. It runs on a daily time step and requires specific information regarding weather,
soil properties, topography, vegetation and land management practices [52]. As a semi-distributed
hydrological model, SWAT possesses a simpler structure and requires less data than the fully
distributed MIKE SHE model. However, the model structure uncertainty inherent in the conceptual
lumped model will significantly impact the prediction results [53]. In addition, the conceptual lumped
model cannot specifically analyze hydrological processes such as the spatial and temporal variability
associated with snow and the impacts of soil moisture on irrigation. Thus, the main objective of this
paper is to investigate climate data sources for the SWAT model and provide a theoretical basis for
further analysis of hydrological processes and other topics.

The Soil Conservation Service (SCS) curve number procedure [54] and the Green and Ampt
infiltration method are included in the SWAT model. Although the Green and Ampt infiltration model is
more physically based than the SCS model, the Green and Ampt infiltration model requires less readily
available sub-daily precipitation records and detailed soil information. This is a large obstacle for using
this model in data scarce regions [55]. Thus, the SCS method is applied in this research. There are
two alternative functions of SCS method (antecedent soil moisture and plant evapotranspiration).
In this study, the antecedent soil moisture method was used because of its suitability in semi-humid
and humid regions (this study area belong to the semi-humid region with annual precipitation
of 739 mm) [56–60]. The model offers three options for estimating potential evapotranspiration:
the Hargreaves [61], Priestley-Taylor [62] and Penman-Monteith methods [63]. The three PET methods
included in SWAT vary in the number of required inputs. The Hargreaves method requires only
maximum, minimum and average air temperature, while the Priestley-Taylor method requires solar
radiation, air temperature and relative humidity. The inputs for Penman-Monteith method are the
same as those for the Priestley-Taylor method, but it also requires wind speed. The Hargreaves method
is applied in this study because of meteorological data limitations.
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In SWAT, a watershed is divided into multiple sub-watersheds. Then, these watersheds are
divided into homogeneous spatial units with similar geomorphologic and hydrologic properties,
namely, hydrologic response units (HRUs) [64]. In this study, the basin was divided into 52 sub-basins
and 361 HRUs.

3.4. Model Calibration and Validation

The SWAT model was run at a monthly scale in this study because observed daily runoff data
were not available for model calibration and validation. The calibration period was from 1965 to
1978, and the first two years were the warm-up period. The validation period was from 1979 to 1985.
The NSE and CF between simulated and observed flows [65] were used to evaluate the results of the
model. The ranges of the criteria for very good, good, satisfactory and unsatisfactory results were
based on those proposed by Bressiani et al. [26]. Because of the lack of daily weather station data,
the APHRODITE precipitation data and the maximum and minimum temperatures of the PGMFD
were used to calibrate and validate the model after bias correction (selected according to the accuracy
assessment in Section 4.1).

Twenty sensitive parameters were selected according to previous studies [5,47,66,67] and tested
in the SWAT-CUP to perform a sensitivity analysis. Fourteen sensitive parameters were selected
according to their performances in the sensitivity analysis, and manual calibration and auto-calibration
were performed using a Sequential Uncertainty Fitting (SUFI-2) algorithm to achieve acceptable
performance [68–73]. The topographic effects were also considered by dividing the watershed into
10 elevation bands and correcting the data using the temperature lapse rate (TLAPS) and the precipitation
lapse rate (PLAPS).

4. Results

4.1. Evaluation of Data Accuracy

The pattern of the annual cycle of precipitation shows that the study area received the maximum
amount of rainfall in the spring (Figure 3). The APHRODITE data pattern was similar to the distribution
pattern of WSD. Both the CRUNCEP and PGMFD data sets overestimated precipitation in the spring
and winter at Daraut-Kurgan station, and the trend at Sarytash station was almost the same. However,
the CRUNCEP and PGMFD data sets underestimated precipitation in the spring and winter at
Fedchenko Glacier, and the trend at Lyairun station was almost the same. The annual cycle of maximum
and minimum temperature (Figure 3) indicated that the PGMFD underestimated the temperature
and the CRUNCEP data set overestimated the temperature at three stations, excluding Fedchenko
Glacier station. The PGMFD data pattern more closely mimicked the distribution pattern of weather
station data.

The average monthly values of 25-year precipitation and maximum and minimum temperature
box plots at the four stations are plotted in Figures 4 and 5 based on the WSD and gridded data sets.
The inter-quartile range of the gridded data sets illustrates that the APHRODITE data provided the
best performance. The APHRODITE data span almost the same range as the WSD at Sarytash and
Daraut-Kurgan stations. The ranges of the APHRODITE data at the other stations are slightly narrower
than the weather station data. However, the differences are very small. The CRUNCEP precipitation
data performed better than the PGMFD precipitation data. In terms of the annual average precipitation
in the watershed, all of the gridded data sets underestimated precipitation. The APHRODITE data set
had the highest value, followed by the PGMFD and CRUNCEP data sets. The maximum and minimum
temperature ranges of the PGMFD were closer to the WSD than were those of the CRUNCEP data
(Figure 5). Therefore, we conclude that the APHRODITE data and PGMFD data are optimal for forcing
the hydrologic model. In this study, this data was used to calibrate and validate the model after
correction. The performance of corrected data combination and non-corrected data combinations were
analyzed in Sections 4.2 and 4.3.
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Figure 3. Annual cycles of temperature and precipitation based on the WSD and gridded data
sets. (a) Annual cycle of precipitation at Daraut-Kurgan station; (b) Annual cycle of precipitation at
Fedchenko Glacier station; (c) Annual cycles of maximum (Tmax) and minimum (Tmin) temperature
at Sarytash station; (d) Annual cycles of Tmax and Tmin at Daraut-Kurgan station; (e) Annual cycles of
Tmax and Tmin at Lyairun station; (f) Annual cycles of Tmax and Tmin at Fedchenko Glacier station.
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Figure 5. Box plots of temperature based on WSD and gridded data sets at four stations. (a) box plot of
temperature at Sarytash station; (b) box plot of temperature at Daraut-Kurgan station; (c) box plot of
temperature at Lyairun station (d) box plot of temperature at Fedchenko Glacier station.

Table 2 presents the comparative statistics at four stations on a monthly scale from 1965 to
1990. The APHRODITE precipitation data provided the highest accuracy, followed by the CRUNCEP
precipitation data set. The CF of the APHRODITE precipitation data at four stations was higher
than 0.89, whereas the CF values of the CRUNCEP and PGMF precipitation data were higher than
0.50 and 0.46, respectively, except at Daraut-Kurgan station. The MAE of the APHRODITE monthly
precipitation data was lower than 30 mm, whereas the MAEs of the CRUNCEP and PGMFD data sets
were 16.92–41.56 mm and 22.64–47.25 mm, respectively. The CF and NSE values of the PGMFD and
CRUNCEP temperature data were higher than 0.9 and 0.57, respectively, based on the WSD, and the
RMSE, MAE and MBias of the PGMFD data were lower than those of the CRUNCEP data. Overall,
the PGMFD temperature data exhibited a higher accuracy than the CRUNCEP temperature data.
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Table 2. Comparative statistics of precipitation and temperature data from different sources at
four stations.

Station Statistics
Precipitation Maximum Temperature Minimum Temperature

APHRODITE CRUNCEP PGMFD CRUNCEP PGMFD CRUNCEP PGMFD

Sarytash

CF (-) 0.91 0.50 0.46 0.99 0.99 0.98 0.98
RMSE (mm, ◦C) 12.19 22.52 31.7 5.02 1.72 7.07 2.55
MAE (mm, ◦C) 8.89 16.92 22.64 4.65 1.35 6.85 2.06

MBias (-) 0.77 1.01 1.14 2.05 1.11 0.17 0.8
NSE (-) 0.56 0.05 0.18 0.82 0.97 0.57 0.91

Daraut-Kurgan

CF (-) 0.32 0.26 0.21 0.98 0.98 0.97 0.98
RMSE (mm, ◦C) 29.87 34.03 57.21 2.49 4.88 4.45 3.30
MAE (mm, ◦C) 22.9 26 39.02 1.91 4.49 3.91 2.93

MBias (-) 1.03 1.28 1.71 1.13 0.55 −0.13 1.74
NSE (-) −0.49 −0.22 −0.05 0.94 0.81 0.76 0.85

Lyairun

CF (-) 0.99 0.91 0.87 0.99 0.99 0.99 0.99
RMSE (mm, ◦C) 39.42 50.07 58.15 6.25 4.83 5.57 4.78
MAE (mm, ◦C) 23.94 36.84 39.64 6.04 4.66 5.44 4.55

MBias (-) 0.88 0.59 0.65 0.55 0.65 −1.54 −1.12
NSE (-) 0.92 0.23 0.42 0.74 0.82 0.65 0.73

Fedchen-ko
Glacier

CF (-) 0.89 0.88 0.73 0.99 0.99 0.99 0.99
RMSE (mm, ◦C) 41.56 58.08 62.70 6.07 2.37 1.68 4.51
MAE (mm, ◦C) 29.94 45.15 47.25 5.61 2.06 1.41 4.22

MBias (-) 0.85 0.53 0.60 −0.49 0.76 0.93 1.44
NSE (-) 0.64 −0.06 0.11 0.73 0.94 0.95 0.75

4.2. Modeling River Flow Using Corrected Data

The SWAT model was calibrated and validated using corrected precipitation data from
APHRODITE and the maximum and minimum temperatures from the PGMFD data set. The CF
and NSE of the model increased from 0.95 and 0.85 to 0.96 and 0.92, respectively, in the calibration
process and increased from 0.92 and 0.77 to 0.93 and 0.83 in the validation process after correction.
The CF and NSE when the topographic effects were not considered were 0.78 and 0.48, respectively,
indicating that correction based on TLAPS and PLAPS using elevation bands can significantly improve
the accuracy. The major parameters identified by the sensitivity analysis and their degrees of sensitivity
are shown in Table 3. The t-statistic provides a measure of sensitivity (larger absolute values are more
sensitive). ALPHA_BF.gw is the most sensitive parameter for simulating runoff in this region. Figure 6
shows the observed and simulated flows at Garm gauging station in the calibration and validation
periods. The model predicted the peak flow very well, and the simulated low flow was lower than the
observed low flow.

Table 3. Descriptions of the sensitive parameters and their degrees of sensitivity.

Parameter Description Default Range Optimized Range t-Statistic

ALPHA_BF.gw Base flow alpha factor (1/days) 0–1 0.05–0.15 23.84

CH_K2.rte Effective hydraulic conductivity in the main channel (mm/h) −0.01–500 40–80 −8.99

HRU_SLP.hru Average slope steepness (m/m) 0–1 0.2–0.6 5.17

SMTMP.bsn Snow melt base temperature (◦C) −20–20 0–3.5 −4.15

SMFMX.bsn Maximum melt rate for snow during the year
(mm H2O/◦C-day) 0–20 3.01–6.5 3.54

TIMP.bsn Snowpack temperature lag factor (-) 0–12 0.4–0.9 2.56

GW_DELAY.gw Groundwater delay (days) 0–500 30–60 −2.10

SOL_K.sol Saturated hydraulic conductivity (mm/h) 0–2000 50–800 1.75

ESCO.hru Soil evaporation compensation factor (-) 0–1 0.7–0.99 1.67

SFTMP.bsn Snowmelt base temperature (◦C) −20–20 0–5 −1.18

CN2.mgt SCS runoff curve number (-) 35–98 72–95 −1.01

CH_K1.sub Effective hydraulic conductivity in tributary channels (mm/h) 0–300 36–80 −0.59

GW_REVAP.gw Groundwater “revap” coefficient (-) 0.02–0.2 0.02–0.10 −0.35

SOL_AWC.sol Available water capacity of the soil layer (mm H2O/mm soil) 0–1 0.1–0.4 0.04
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4.3. Modeling River Flow Using Different Data Combinations

The six combinations of three precipitation data sets and two temperature data sets were entered
into the calibrated model to investigate their performance. The six models were denoted by AP, PP, NP,
AN, PN and NN, as discussed in Section 3.2. The NSE and CF in the validation period are shown in
Table 4.

Table 4. NSE and CF in the validation period for the seven models.

Statistics CAP AP PP NP AN PN NN

NSE (-) 0.83 0.77 0.7 0.71 0.58 0.30 0.43
CF (-) 0.93 0.92 0.89 0.91 0.82 0.69 0.78

The comparison of the performances of the corrected (CAP) and non-corrected data (AP)
indicates that the simulation accuracy of the model significantly increased after correction. In the
six non-corrected models, The AP model produced very good results, with NSE = 0.77 and CF = 0.92.
The PP and NP models also produced good results, with NSE ≥ 0.70 and CF ≥ 0.89, whereas AN
produced satisfactory results, with NSE = 0.58 and CF = 0.8, and PN and NN produced poor
results, with NSE < 0.50. Therefore, any of the aforementioned combinations of precipitation and
temperature except PN or NN can be used to model the river flow in this region if there are no observed
meteorological data available for hydrologic modeling. Figure 7 compares the results of the seven
models. The results of the CAP model are significantly better than those of the AP model. The results of
the PP and NP models were almost the same, which is expected because little difference exists between
the precipitation data from the PGMFD and CRUNCEP data sets. The accuracies of the AN, PN and NN
models were significantly lower than those of the first four models. The performance of the AN model
was satisfactory, whereas the PN and NN models exhibited poor performance. The results of the first
three models (AP, PP and NP) indicated that of the three types of precipitation data, the APHRODITE
data performed the best, followed by the CRUNCEP and PGMFD data. This result can be attributed to
the accuracy of the CRUNCEP precipitation data being higher than that of the PGMFD precipitation
data. The comparison of the results of the first and second three models indicates that the simulation
accuracy sharply decreased after using the CRUNCEP temperature data. The river flow in this study
area was more sensitive to temperature than to precipitation, which can be attributed to the fact that
nearly 80% of the water resources in the area above the Nurek Reservoir are generated by snow and
glacial melt [8], and the accuracy of the temperature data from the CRUNCEP data set was lower than
that of the temperature data from the PGMFD.
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PNand NN.

5. Discussion

The results of the accuracy assessments indicated that APHRODITE exhibited the best
performance. The accuracy of CRUNCEP precipitation data was lower than APHRODITE and higher
than the PGMFD precipitation data. This may because the relatively coarser spatial resolution of
CRUNCEP and PGMFD data and the different assimilation methods used. The correlation coefficients
of the grid-based precipitation data with the WSD were higher than 0.5. The maximum and minimum
temperatures at all the stations are satisfactory according to the criteria.

According to the runoff simulation performance of the combinations, the performance of the
corrected data combination (CAP) was significantly better than the non-corrected combinations.
This indicated that the linear bias correction can efficiently improve the simulation accuracy. In addition,
weather data correction using TLAPS and PLAPS also can improve the simulation accuracy. This is
because TLAPS and PLAPS corrected the errors caused by the topography. The model CAP predicted
the peak flow very well, and the simulated low flow was lower than the observed low flow. These results
can be explained by the fact that the PGMFD temperature data that we used to calibrate and validate the
model have lower values than the observed records in high elevation areas, as is described in Section 4.1.
The lower temperatures in high-elevation regions reduce the conductivity of the soil [74].

In the non-corrected combinations, the AP produced a very good result, PP and NP
produced good results, AN produced a satisfactory result, and PN and NN produced poor results.
Although APHRODITE exhibited the best performance, the available period of these data was from
1951 to 2007, and they only covered monsoon Asia. Therefore, these data are only appropriate for use
in studies in monsoon Asia. According to the above results, the PGMFD and CRUNCEP precipitation
data can be used for long-term simulations of stream flow if APHRODITE data are not available.
Among the temperature data, the PGMFD data performed better than the CRUNCEP data. In all,
the combinations of PGMFD temperature data and any of the three precipitation data can get good
results. The combination of APHRODITE precipitation and CURNCEP temperature data can achieve
satisfactory results.
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Vu and Liong [47] evaluated the daily rainfall products of APHRODITE, TRMM, GPCP,
PERSIANN, GHCN2 and NCEP/NCAR from 2001 to 2005. The evaluation criteria associated with
APHRODITE data when compared to WSD were lower in their study than in this study. This result is
potentially because the accuracy of APHRODITE in 2001–2005 was lower than in earlier years (in this
study, we used only observed data from 1965 to 1990 because of data limitations), or because the
data had different accuracies in different regions. This hypothesis will be tested in further studies
incorporating the Global Summary Of the Day (GSOD), Global Historical Climatology Network
(GHCN) and meteorological data from METAR (Météorologique Aviation Régulière). Yang et al. [65]
also evaluated the performance of APHRODITE in simulating runoff in the Three Gorges Reservoir,
China, from 2002 to 2006. Their model performed better in river basins with flat topography than
in river basins with significant variations in elevation. In this research, the effect of topography was
corrected using TLAPS and PLAPS, which improved the accuracy of the simulation. In this study,
we only used meteorological data from four stations. In future studies, the impact of the spatial density
of stations on the simulation of runoff will be studied by manually designing stations in each pixel
of the gridded data. Regional differences in grid-based data sets will be tested by selecting different
watersheds with different topographic features. In this study, the results were only given at monthly
time steps because of the limitations of river flow data. If observed daily river runoff data were to
become available, the river runoff could be modelled more precisely.

6. Conclusions

The accuracies of three sets of precipitation data and two sets of temperature data from three data
sets were analyzed via a comparison to WSD from four stations. The performances of the corrected
data combination and six combinations of non-corrected precipitation and temperature data from
multi-sources were analyzed on simulating stream flow, and four optimal data combinations were
selected in the study area.

The APHRODITE precipitation data provided the highest accuracy, followed by the CRUNCEP
precipitation data. The PGMFD precipitation data provided the lowest accuracy. All of these data sets
underestimated precipitation. The annual average values exhibited the following order: weather station
data > APHRODITE > PGMFD > CRUNCEP. The accuracy of the PGMFD temperature data was
higher than that of the CRUNCEP temperature data. The CRUNCEP temperature data overestimated
the temperature, whereas the PGMFD data underestimated the temperature. The combination of
the corrected APHRODITE precipitation and PGMFD temperature data performed best in terms of
simulating river flow. Correction using topography also unambiguously increased the simulation
accuracy. Among the non-corrected combined inputs, the AP provided the best performance, and the
PN and NN provided the poorest performance in simulating river flow. The NP and PP provided good
performance, and AN provided satisfactory performance in simulating river flow. Therefore, the AP is
the best choice in cases where meteorological data are not available. Additionally, the combinations of
NP and PP can be used to simulate river flow in the upstream portion of the ADRB.
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