ФИТОМЕЛИОРАЦИЯ – ОСНОВА ЭКОЛОГИЧЕСКОГО РАВНОВЕСИЯ ОРОШАЕМОГО ЗЕМЛЕДЕЛИЯ

Н.Н. Хожанов, К. Естаев, Г.Е. Джабалбаев

Таразский государственный университет, г. Тараз, Казахстан

Развитие орошения вызвало сложные изменения в почвообразовании и во многих взаимосвязанных природных процессах на орошаемых и прилегающих к ним территориях. Экологическая обстановка, вызванная крайне нерациональным использованием водно-земельных ресурсов, обусловила направленность изменения природных процессов и эколого-мелиоративных режимов орошаемых массивов.

По данным Международного института окружающей среды и развития и института мировых ресурсов около 10% поверхности континентов покрыто засоленными почвами, которые в большей степени распространены в аридных районах. Серьезно проблема засоления проявляется в 75 странах мира. Из общей площади орошаемых земель в мире (более 220 млн.га) засолению подтверждено не менее 25%, а возможно и около 50%. Орошаемые земледелия является причиной засоления и заболачивания земель.

Для оценки влияния антропогенной деятельности, как свидетельствуют многое ученые [1,2,3,4], можно использовать систему интегральных показателей и критериев. При этом большое значение имеют такие критерии, как растительность, почвы, водоисточники, животные и т.д. Эти критерии должны быть универсальными, экономически интерпретируемыми, экологически обобщенными, зонально обусловленными. Для того, чтобы определить состав этих показателей, необходимо в начале установить общие критерии, используемые для обоснования и выбора таких систем мелиорации, которые в определенных регионах отвечали бы общей задаче — усилению интенсивности биологического и замедлению геологического круговоротов воды и химических веществ.

Устойчивость природных систем к мелиоративному воздействию [5] можно оценивать через эколого-мелиоративный потенциал орошаемого массива, который представляет собой комплексную качественно-количественную характеристику трех генетически и функционально связанных компонентов: атмосферы, почвы и грунтовых вод и описывается в следующей форме.

$$\overline{M} = \frac{\overline{An}}{\overline{C}};$$

где: M - эколого-мелиоративной потенциал или мелиоративный показатель орошаемой территории; \overline{An} - работа, совершаемая в элементарном объеме потоком инфильтрационных вод в почвенном слое; \overline{C} - средняя концентрация солей в системе «поверхностная вода — почвогрунтовая вода».

Исходя из этих соображений, для оценки влияния антропогенных факторов нами ставились задача выявления качественного и количественного состава солепылевых выпадений в зависимости от отдаленности от объекта исследования. В данном случае объектом исследования являются солепылевые выпадения, поднимающиеся с осущенного дна Аральского моря.

Анализ природно-ресурсного потенциала исследуемого объекта свидетельствует, что относительная влажность воздуха за годы исследований снизились с 53% до 35%, тогда как показатель испаряемости по Иванову Н.Н. повысился с1022,6 мм до 1390,6 мм, а сумма среднемесячных температур за вегетационный период поднялась с127,1 до 130,6 (табл. 1). Эти обстоятельства дают нам понять, что к началу нового тысячелетия по региону ожидаются следующие тенденции.

- с 1993 года отмечается резкое уменьшение относительной влажности воздуха на 20-25%;
 - -с 1992 года отмечается существенное увеличение испаряемости на 15-20%;
- -с 1989 года начинается увеличение среднесуточной температуры воздуха на 1-2 градуса.

Эти и другие негативные аспекты агроэкологического состояния орошаемых земель Приаралья требуют со всей серьезностью относиться к вопросам мелиоративного оздоровления орошаемых земель. Так, например, показатели относительной влажности воздуха за вегетационный период (4-9) по отношению к апрелю снижаются на 18-32%, а накопление солепылевых выпадений по иону хлора увеличивается на 33,3-132,1% (табл. 2).

Таблица 1 - Показатели изменения природных ресурсов по отношению к среднегодовому

Годы	Относительная	К	Испаряемость	К	Сумма
	влажность	среднегодовому	за вегет.	среднегодовому	среднемесячных
	воздуха,%		период		температур
	WB		Ео		t
1987	53	1,18	1113,3	0,91	127,1
1988	51	1,13	1022,6	0,84	122,2
1989	53	1,18	1149,4	0,94	128,1
1990	49	1,09	1108,4	0,91	135,5
1991	52	1,16	1004,3	0,83	132,2
1992	51	1,13	1200,3	0,99	123,3
1993	43	0,96	1200,4	0,99	130,1
1994	40	0,89	1442,2	1,18	129,5
1995	35	0,78	1347,2	1,11	130,7
1996	41	0,91	1348,9	1,11	130,3
1997	38	0,85	1390,6	1,14	130,6
1998	35	0,78	1339,7	1,10	130,5
	45,1		1222,3		129,2

Таблица 2 - Показатели относительных величин (Wв,п.о,и CI) по отношению к началу вегетации

Месяцы	W	П.О	CI	W	П.О	CI
Апрель	1,38	1,65	0,78	100	100	100
май	1,14	1,27	1,32	82,1	76,9	169,2
июнь	0,94	1,32	1,36	67,8	80,0	174,3

июль	0,79	1,70	1,81	57,1	103,0	232,1
август	0,84	1,14	1,11	60,7	69,1	141,3
сентябрь	0,94	0,72	1,04	67,8	43,6	133,3

С другой стороны, показатели среднемесячного накопления солепылевых выпадений колеблются в пределах 0,36-1,81 по иону хлора; 0,18-1,70 по плотному остатку (табл. 3). В разрезе года, как видно из таблицы, показатели среднемесячного накопления солепылевых выпадений можно подразделить на периода: вегетационный И невегетационный. Отсюда солепылевых выпадений за вегетационный период составляет 1,23, а за невегетационный период 0,67 по иону хлора. Такая же тенденция наблюдается и по накоплению плотного остатка, который колеблется соответственно от 1,30 до 0,54. Данные свидетельствуют, что по отношению к среднегодовому показателю за вегетационный период наблюдается увеличения содержания иона хлора на 23%, а за невегетационный период снижение на 33%, а по плотному остатку соответственно 30 и 46%.

Исследованиями выявлено, что за вегетационный период в прилегающие территории с акватории Аральского моря поступают примерно $1000~\rm kr/ra$ соленых выпадений в виде $\rm MgCl_2$, $\rm NaCl, MgSO_4$. Учитывая усиление антропогенных факторов, на сегодняшний день можно с уверенностью заявить, что солепылевые выпадения, рассеиваемые на орошаемые зоны южного Казахстана и северного Узбекистана, достигли критического состояния. Однако из-за объективных и субъективных причин вопросы реабилитации орошаемых угодий остаются на втором плане.

Таблица 3 - Показатели среднемесячного накопления солепылевых выпадений

Месяцы		годы						Среднее за 3-года	
	1990		1991		1992		η	η	
	Cl	П.о	C1	П.о	C1	П.о			
Январь	0,47	0,17	0,53	0,22	0,16	0,15	0,38	0,18	
Февраль	0,42	0,34	0,35	0,48	0,33	0,30	0,36	0,37	
Март	0,70	1,74	0,49	0,36	0,16	0,51	0,60	0,87	
Апрель	0,64	1,58	0,88	1,74	0,83	1,64	0,78	1,65	
Май	1,41	1,39	1,23	1,32	1,33	1,12	1,32	1,27	
Июнь	0,76	1,29	1,12	1,16	2,20	1,50	1,36	1,32	
Июль	1,52	1,63	2,30	1,82	1,61	1,66	1,81	1,70	
Август	1,23	0,54	0,88	1,48	1,22	1,42	1,11	1,14	
Сентябрь	1,35	0,60	1,29	0,94	0,50	0,62	1,04	0,72	
Октябрь	1,70	0,69	0,58	0,50	1,80	1,09	1,36	0,76	
Ноябрь	-	-	-	-	-	-	-	-	
Декабрь	-	-	-	-	-	-	-	-	
Сред. за							1,23	1,30	
вег. период									
Сред. за не-							0,67	0,54	
вег. период									

С другой стороны, солепылевые выпадения вызвали повышение засоленности почв. Так, например, в дельтах реки Сырдарьи свыше 80-85% орошаемой территории в различной степени засолены, что отрицательно сказывается на росте и развитии основных культур (зерновые, кормовые и овоще-бахчевые). В этих условиях для подъема сельскохозяйственного производства требуется вложение значительных капитальных затрат на реконструкцию оросительной системы. В этой связи необходимо предложить менее трудоемкий и более дешевый метод возврата орошаемых земель в сельскохозяйственных оборот.

Фитомелиорация, как свидетельствуют результаты многолетних исследований, способствует ослаблению ветровой деятельности, а также обеспечивает рассоление почвогрунта в корнеобитаемой зоне. К наиболее приемлемым культурам относятся подсолнечник, кукуруза и суданская трава. При этом на засоленных землях эти культуры обеспечивают получения до 250-350 ц/га зеленой массы (табл. 4).

Фитомелиоративные культуры в силу физиологической устойчивости позволяют уже в первый год посева рассолить почву на 64-69% от исходного. При 2-3-х летнем возделываний эти культуры полностью избавят корнеобитаемую зону от избытка вредных солей.

По данным [6] рассоляющий эффект галофитов складывается из следующих элементов. В метровом слое почвы на сильнозасоленных среднесуглинистых почвах полупустынь содержание солей составляет 48 т/га. При фитомассе подземной части 18-20 т/га галофиты выносят из почвы 8-10 т/солей с 1 га в год. Затеняя почву, галофиты препятствуют испарению и связанному с ним подтягиванию солей в верхний слой почвы. Эффект зеленой мульчи составляет 2,5 т/га солей. В итоге на участке, занятом насаждениями галофитов, вынос солей из почвы достигает 10-12,5 тонн в год.

Культуры	Целевое засоление почвогрунта, %	Засоление в конце вегетации	всхожесть семян, %	Высота растений, см	Урожайность зеленой массы, ц/га	Урожайность семян, ц/га
Подсолнечник	1,260	0,390	70	148	-	7,0
Кукуруза	1,180	0,420	58	160	247	-
Суданская трава	1,340	0,480	67	169	329	-

Таблица 4 - Фитомелиоративная эффектность кормовых культур

Исходя, из этого обстоятельства можно сделать следующие выводы:

- в целях смягчения эколого-мелиоративной обстановки в районах антропогенного воздействия следует пересмотреть состав сельскохозяйственных культур;

- на границе прилегающих к орошаемым массивам участков рекомендуем возделывать высокорослые солеустойчивые культуры кормового или масличного направления;
- на прилегающих к орошаемым массивам участках целесообразно проводить фитомелиоративные работы с целью укрепления почвы путем кулисного земледелия;
- интенсивное развитие фитомелиорации способствует рациональному использованию водно-земельных ресурсов и качественному оздоровлению орошаемых земель;
- анализируя фитомелиоративной потенциал разных растений, культурные растения можно расположить по почвовосстанавливающей эффективности в следующий ряд: многолетние травы двухлетние бобовые травы однолетние травы озимые зернобобовые яровые зерновые пропашные.

Литература

- 1. Айдаров И.П., Корольков А.И., Хачатурьян В.Х. Моделирование почвенно-мелиоративных процессов. //Биологические науки, 1987, №9, с.27-38.
- 2. Кирейчева Л.В., Решеткина Н.М. Концепция создания устойчивых мелиоративных агроландшафтов. М.1997
- 3. Голованов А.И. О целях сушности мелиорации земель. //Вестник сельскохозяйственной науки, 1991, №12 с.39-43
- 4. Мухамеджанов В.Н.. Баранов Р.К., Жданов Г.Н. Эколого-экономической аспект использования водно-земельных ресурсов аридной зоны. Тараз НЦ, 1991-146с.
- 5. Мустафаев Ж.С., Козыкеева А.Т., Ахметов Н.Х.Методологические основы оценки эколого-мелиоративного потенциала орошаемых земель. // Наука и образование Южного Казахстана. 2000, №21 с.34-35.
 - 6. Почвоведение // Под ред. И.С. Кадричева М. Колос, 1982.