Центр научного сотрудничества «Интерактив плюс»

- 17. Соколов В.Е. Млекопитающие России и сопредельных регионов. Зайцеобразные / В.Е. Соколов, Е.Ю. Иваницкая. М.: Наука, 1994. 272 с.
- 18. Соколов В.Е. Систематика млекопитающих. Отряды зайцеобразных и грызунов. М.: Высшая школа. 1977. 494 с.
 - 19. Соколов В.Е. Медицинская териология. М.: Наука, 1979.
- 20. Олькова Н.В. Библиография по грызунам и зайцеобразным Сибири и Дальнего Востока (1786–1967 гг) / Н.В. Олькова, К.А. Башанов. Кызыл, 1970.
- 21. Песков В.Н. Географическая изменчивость и морфологическая дифференциация зайца русака (Lepus europaeus) на территории Украины / В.Н. Песков, Л.С. Шевченко; Зб. пцарь зоол.муз. 2005. №37. С. 121–133.
- 22. Песков В.Н. Внутрипопуляционная дифференциация зайца-русака (Lepus europaeus) на территории полесья и лесостепи Украины / В.Н. Песков, Л.С. Шевченко; 36. пцарь зоол.муз. 2006. №38. С. 97–112.
- 23. Россолимо О.Л. Очерк географической изменчивости черепа зайца-беляка: Сб. трудов зоол. муз. Моск. ун-та. -1979. -18 с.

Рамазанова Раушан Хамзаевна канд. с.-х. наук, доцент Кекилбаева Гулнур Рахманкызы канд. биол. наук, старший преподаватель Кенжегулова Саягуль Олжабаевна канд. с.-х. наук, старший преподаватель Хамзина Бибигуль Нуркеновна старший преподаватель

АО «Казахский агротехнический университет им. С. Сейфуллина» г. Астана, Республика Казахстан

ОЦЕНКА СОВРЕМЕННОГО ЭКОЛОГИЧЕСКОГО СОСТОЯНИЯ ПОЧВЕННОГО И РАСТИТЕЛЬНОГО ПОКРОВА В ЗОНАХ ИНТЕНСИВНЫХ ПРОМЫШЛЕННЫХ НАГРУЗОК НА ЮГЕ И ЮГО-ВОСТОКЕ КАЗАХСТАНА

Аннотация: тяжелые металлы, накапливаясь в почве, способствуют ухудшению качественного состава гумуса — увеличивается доля углерода в составе гумуса, содержание фракций фульвокислот. Установлено распределение ТМ по профилю исследуемых почв — гумусово-аккумулятивное, элюви-ально-иллювиальное, безградиентное (монотонное), карбонатное. Для почв легкого гранулометрического состава характерно максимальное содержание цинка, кадмия, свинца в верхней части профиля в гумусовом горизонте, минимальное содержание меди. Для тяжелосуглинистых почв максимальное количество меди, цинка, кадмия, отмечается в нижних горизонтах, свинец накапливается в верхних горизонтах.

Ключевые слова: тяжелые металлы, загрязнение почвы, техногенно-загрязненные районы, гумус, агрохимические показатели, культурные растения, почва.

На сегодняшний день исключительно большую тревогу вызывают прогрессирующие процессы техногенного загрязнения агроэкосистем: сельскохозяйственных угодий и водных источников тяжелыми металлами, химическими органическими и другими видами токсикантов. Основными источниками техногенного загрязнения являются предприятия нефте-, газодобывающей, нефтеперерабатывающей, металлургической промышленности, выбросы авто-

транспорта, ТЭЦ.

В Республике Казахстан площадь земель сельскохозяйственного назначения сократилась на 15 млн. га, одной из причин этого явилось техногенное загрязнение территорий, прилегающих к промышленным предприятиям, которые интенсивно развивались в последние годы. К примеру, Карачаганакское НГКМ, заводы цветной металлургии в Восточно-Казахстанской, Южно-Казахстанской, Павлодарской, Акмолинской и др. областей.

В связи с этим нами проведены исследования с целью оценки современного экологического состояния почвенного и растительного покрова в зонах интен-

сивных промышленных нагрузок на юге и юго-востоке Казахстана.

В качестве объектов исследований были выбраны сероземы обыкновенные, прилегающие к территориям Алматинской ТЭЦ-2 и ЗАО «Южполиметалл» (бывший Шымкентский свинцово-цинковый комбинат).

Анализ физико-химических свойств сероземов обыкновенных Алматинской области показал, что по гранулометрическому составу почвы являются легким суглинком с содержанием физической глины 20,3–21,4%. В профиле почв содержание воднорастворимых солей очень низкое (сумма солей в пределах 0,054–0,062%). Среди анионов преобладает НСО₃- (0,47–0,54 мг-экв.). Среда шелочная, обусловленная карбонатностью почвы, причем карбонатов и щелочность с глубиной возрастают (рН от 7,98 до 8,18; СО₂ карбонатов от 3,41 до 9,3%). Емкость поглощения низкая и по профилю находится в пределах 11–12,5 мг-экв. на 100 г почвы. Среди поглощенных оснований доминирует кальций (75–88% от суммы), поглощенного натрия в пахотном горизонте 3,1–3,3% от суммы, глубже он возрастает до 6–7%, но морфологических признаков солонцеватости не обнаружено.

Для описания сероземов обыкновенных южных нормальных был заложен разрез в 3 км южнее г. Шымкента в пределах слабовыпуклого водораздела увала на абсолютной высоте 550 м под низкотравной эфемерово-эфемероидной растительностью (сомкнутость травостоя 80–90%, его высота 15–25 см). Гранулометрический состав сероземов обыкновенных южных нормальных тяжело- и среднесуглинистые. Почвы в целинном состоянии содержат 1,5–2% гумуса и 0,09–0,15% общего азота при отношении органического углерода к азоту 7,5–10.

Содержание карбонатов в поверхностном слое этих почв составляет 7–14% и увеличивается с глубиной, достигая максимума (20–26%). Сумма поглощенных оснований колеблется в пределах 10–14 мг-экв на 100 г почвы и несколько уменьшается, в большинстве случаев с глубиной. Поглощающий комплекс этих сероземов насыщен в основном кальцием, содержание поглощенного натрия крайне незначительное. Реакция водных почвенных суспензий щелочнов и почвенных комплекс в прибимой.

ная, несколько усиливающаяся с глубиной.

Обеспеченность неудобрявшихся почв подвижными формами питательных веществ в наших примерах средняя – калием, слабая и средняя – фосфором, средняя и хорошая – азотом. Довольно хорошая обеспеченность подвижным азотом.

Отбор почвенных проб проводился в направлении господствующих ветров на расстоянии 50 м, 100 м, 400 м, 1000 м, 3000 м, 5000 м на глубину 0–20 и 20–40 см, также одновременно отбирались растительные образцы.

Результаты исследований

Проблема тяжелых металлов (ТМ) в условиях загрязнения требует пристального внимания, особенно в пригородных зонах крупных мегаполисов, где необходим постоянный контроль за почвой и гигиеническая оценка производимой продукции. Согласно исследованиям, чем выше суммарная буферность почвы и внесенных в нее органических субстратов, тем меньше негативное

Центр научного сотрудничества «Интерактив плюс»

воздействие техногенных загрязнителей. Кроме общего уменьшения влияния загрязнения при контролируемом повышении буферности системы отмечена возможность количественной коррекции поглощения макроэлементов [1; 2]. Поэтому это свойство почвы следует учитывать при оценке степени загрязнения и как средство борьбы с загрязнением.

Ввиду того, что загрязненные почвы часто используются для выращивания сельскохозяйственных культур, встает вопрос об их пригодности и восстановлении их плодородия. В этом случае необходимо знать агрохимические характеристики почв, ввиду того, что в число профилактических мер входит их окультуривание, направленное на повышение содержания гумуса и обогащение фосфатами [3]. Применительно к ТМ наиболее опасными путями их движения считаются пищевая цепочка «почва – с/х культуры – человек» и нисходящее перемещение в почвенном профиле до грунтовых вод. Наиболее уязвимым в отношении загрязнения считаются почвы легкого гранулометрического состава и небольшим содержанием гумуса. Анализ данных агрохимических показателей почв показал, что почвы в районе АТЭЦ-2 имеют более высокие показатели содержания подвижных форм питательных веществ и гумуса (таблица 1).

Таблица 1 Агрохимические показатели почвы техногенно загрязненных районов

Расстояние	Ал	матинска	дЕТ ка	-2	Расстоя-	ЗАО «Южполиметалл»			
от объекта,	N-NO ₃	N-NH4	P ₂ O ₅	гумус, %	ние от объекта, м	N-NO ₃	N-NH4	P ₂ O ₅	гумус, %
вос	точное	направле	ение	западное направление					
100	16,0	16,0	46,4	1,37	100	1,7	1,03	17,0	0,75
400	19,2	12,2	51,1	1,40	500	1,7	1,03	13,8	0,75
1000	14,0	14,5	62,3	1,36	1000	1,7	1,03	17,5	0,73
10000	18,2	14,2	48,0	1,38	3000	16,7	2,8	13,2	0,75
I	5000	3,1	2,3	12,5	0,81				
100	14,4	11,0	59,2	1,38	10000	1,7	1,03	11,2	0,80
400	18,0	10,8	35,5	1,38	восточное направление				
1000	12,0	14,2	42,1	1,41	100	13,8	2,3	12,0	0,70
10000	13,0	14,5	58,2	1,40	500	16,7	5,9	11,2	0,73
					1000	31,1	2,8	16,4	0,79
					3000	42,6	2,8	18,9	0,77

В зависимости от направления отбора образцов особого отличия в содержании гумуса почвы не имеют и оно считается невысоким 1,36-1,41%, что требует при ведении с/х производства внесения каких-либо видов органических улобрений

Почвы же в районе ЗАО «Южполиметалл» содержат значительно меньше как минеральных форм азота, так и подвижного фосфора, содержание гумуса меньше 1%, что не характерно для сероземных почв, и соответственно у этих почв в связи с низкой буферностью устойчивость к воздействию загрязнения почв тяжелыми металлами будет очень низкая.

Нами выявлено, что большая степень накопления ТМ характерна для почв с низким содержанием органического вещества. ТМ, накапливаясь в почве, способствуют увеличению доли углерода в составе гумуса, некоторое увеличение фракций фульвокислот, происходит связывание подвижного фосфора в

почве, снижается биологическая активность почв. Так, при анализе почв, отобранных в зонах техногенного загрязнения, выявлено, что хотя в сравнении с целинными сероземами содержание гумуса изменяется незначительно, но соотношение углерода к азоту увеличивается и изменяется соотношение гуминовых и фульвокислот. При этом увеличение загрязнения почв вызывает эти изменения в составе гумуса (таблица 2).

Табли Изменение свойств почв в промышленных зонах (почвы, наиболее загрязненные в восточном направлении), слой почвы 0–20 см

та		Алмати	інская Т	ГЭЦ-2	2	та	ЗАО «Южполиметалл»				
Расст. от объекта на восток, м	Pb	Cd	гумус, %	C:N*	Сгк:Сфк*	Расст. от объекта на восток, м	Pb	Cd	гумус, %	C:N**	Сгк:Сфк**
100	2,68	1,09	1,38	7,6	0,84	100	1094	30,4	0,70	5,5	0,7
400	2,02	1,27	1,38	8,2	1,10	500	992,4	75,1	0,73	5,4	0,9
1000	5,82	1,40	1,41	9,3	1,09	1000	716,5	2,13	0,79	6,7	0,9
10000	6,15	1,42	1,40	9,2	0,97	3000	149,1	7,46	0,77	7,0	1,0

Примечание:

Выявлено, что для тяжелых почв характерна большая аккумуляция в горизонтах 10–20 и 20–30 с глубиной их содержание несколько снижается. В восточном направлении почвы в зоне действия АТЭЦ-2 загрязняются в большей стекпени. Растительный покров обследуемой территории изрежен и представлен в основном многлетними травами (чаще люцерна) либо залежью.

При изучении сезонной динамики накопления ТМ в почве и растениях в зонах промышленного загрязнения установлено, что весной содержание ТМ в почве выше, чем осенью. При этом весной более интенсивный уровень загрязнения в районе АТЭЦ-2 отмечается в южном направлении. К осени интенсивность содержания ТМ снижается, что связано с их поступлением в растения. В районе АО «Южполиметалл» различия в содержании тяжелых металлов в зависимости от направления ветра не отмечены, и они больше зависят от сезона года: весной содержание подвижных форм выше, чем осенью.

Установлено, что в течение длительного времени, интенсивность накопления тяжелых металлов в почвах, расположенных на более близком расстоянии от источника выбросов, становится меньше. При этом увеличивается содержание валовых форм. Тогда как с удалением от источника накопление идет более интенсивно с увеличением содержания подвижных форм.

Для почв легкого гранулометрического состава характерно максимальное содержание цинка, кадмия, свинца в верхней части профиля в гумусовом горизонте, минимальное содержание меди. Для тяжелосуглинистых почв максимальное количество меди, цинка, кадмия, отмечается в нижних горизонтах, свинец накапливается в верхних горизонтах.

^{*} соотношение C:N, характерное для целинных сероземов Алматинской области – 8–9; соотношение Crк:Сфк – 1.

^{**} соотношение C:N, характерное для целинных сероземов Южно-Казахстанской области – 6,0–6,5; соотношение Сгк:Сфк – 1.

Центр научного сотрудничества «Интерактив плюс»

По результатам анализов на содержание подвижных форм тяжелых металлов, извлекаемых раствором ацетатно-аммонийного буфера (рН 4,8), приведенным в таблице 3 содержание железа и цинка в сероземных почвах на территории Алматинской ТЭЦ-2 в восточном направлении уменьшается с 9,7 и 0,66 мг/кг на расстоянии от объекта 100 м до 56,59 и 2,15 мг/кг на расстоянии 10000 м. Содержание свинца и кадмия снижается при удалении от объекта на 400 м с последующим возрастанием до 10 км.

Таблица 3 Содержание подвижных форм ТМ в почвах техногенно-загрязненных районов

Расст. от объекта, м	Алматинская ТЭЦ-2*				Расст. от объекта,	3AO «Южполиметалл» (0–20 см)			
от объекта, м	Fe	Zn	Pb	Cd	M	Fe	Zn	Cd	Pb
100 – восток	9,70 17,35	0,66 1,58	2,68 5,01	0,30 0,28	100 – запад	183,2	208	30,8	573,6
400 – восток	14,10 11,49	1,59 1,99	2,02 следы	0,09 0,23	500 – запад	51,7	281	0,75	379,2
1000 – восток	21,32 58,27	1,74 2,83	5,82 6,77	0,18 0,45	1000 – запад	175	356	24,9	581,1
10000 – восток	56,59 16,36	2,15 1,43	6,15 5,09	0,36 0,42	3000 – запад	13,2	170	12,4	175,6
100 – юг	8,47 5,42	1,64 0,06	0,40 0,41	0,12 следы	5000 — запад	15,4	408	14,8	571,4
400 – юг	17,12 17,98	1,69 1,22	3,39 8,51	0,18 0,22	10000 – запад	11,6	188	0,83	19,10
1000 – юг	8,29 6,41	1,67 0,61	3,62 3,10	0,58 0,19	100 – восток	828	444	30,4	1094
10000 – юг	26,06 28,06	0,51 2,07	5,21 2,56	0,43 0,17	500 – восток	767,3	436	75,1	992,4
					1000 – восток	400	412	2,13	716,5
					3000 – восток	54,7	237	7,46	149,1

Содержание свинца колеблется в пределах 2,68–6,15 мг/кг почвы и его можно считать потенциально опасным, так как по категории загрязненности эти почвы относятся от среднего до очень высокого уровня загрязнения, поэтому с особой осторожностью здесь можно допускать возделывание сельско-хозяйственных культур или проведение каких-либо детоксикационных мероприятий.

Загрязнение почв кадмием в сравнении с фоновым содержанием увеличивается в 5 раз и составляет 0,09–0,58 мг/кг почвы.

Четко выраженной зависимости между содержанием ТМ и расстоянием от объекта не установлено, загрязнение происходит в двух направлениях.

Исследования химического состава культурных растений, произрастающих на техногенно загрязненных почвах в районе АТЭЦ-2 и ЗАО «Южполиметалл» показали, что цинк больше накапливают травы 38,9—48,1 мг/кг, в зерновых их количество меньше (таблица 4).

Таблица 4 Среднее содержание тяжелых металлов в культурных растениях техногенно загрязненных территорий

Культура	Zn	Cd	Pb	Cu					
Алматинская ТЭЦ-2									
Озимая пшеница	23,2 2,3		2,3	5,75					
Ячмень яровой	22,7	22,7 2,0		4,75					
ПДК	50,0	0,1	0,5	10,0					
Люцерна (сено)	48,1	3,1	4,8	11,0					
ПДК, мг/кг	10,0	0,03	0,5	10,0					
ЗАО «Южполиметалл»									
Люцерна (сено)	38,9	3,8	26,4	25,7					
Однолетние травы (сено)	39,4	3,56	0,16	24,9					
ПДК, мг/кг	10,0	0,03	0,5	10,0					

Значительное количество кадмия и свинца аккумулируется в также сене люцерны и однолетних трав.

При этом в растениях, выращенных в районе ЗАО «Южполиметалл» уровень содержания тяжелых металлов в 2–3 раза выше, чем в растениях, отобранных с почв на территории АТЭЦ-2. Причем весьма значительные различия отмечаются по содержанию свинца и меди.

Заключение

- 1. Почвы в районе АТЭЦ-2 имеют более высокие показатели содержания подвижных форм питательных веществ и гумуса, чем почвы в районе ЗАО «Южполиметалл», соответственно у этих почв в связи с низкой буферностью устойчивость к воздействию загрязнения почв тяжелыми металлами очень низкая. В течение длительного времени, интенсивность накопления тжелых металлов в почвах, расположенных на более близком расстоянии от источника выбросов, становится меньше. При этом увеличивается содержание валовых форм. Тогда как с удалением от источника накопление идет более интенсивно с увеличением содержания подвижных форм.
- 2. В почвах, отобранных в зонах техногенного загрязнения, в сравнении с целинными сероземами содержание гумуса изменяется незначительно, но соотношение углерода к азоту увеличивается и изменяется соотношение гуминовых и фульвокислот. При этом увеличение загрязнения почв вызывает эти изменения в составе гумуса. Для почв легкого гранулометрического состава характерно максимальное содержание цинка, кадмия, свинца в верхней части профиля в гумусовом горизонте, минимальное содержание меди. Для тяжелосуглинистых почв максимальное количество цинка, кадмия, отмечается в нижних горизонтах, свинец накапливается в верхних горизонтах.
- 3. Минимальное содержание подвижных форм кадмия и свинца для сероземных почв можно признать в качестве гигиенического норматива, отражающего возможную опасность загрязнения растительной продукции.

Список литературы

- 1. Помазкина Л.В. Биогеохимический мониторинг и оценка режимов функционирования агроэкосистем на техногенно загрязняемых почвах: учебник / Л.В. Помазкина, Л.Г. Котова, Е.В. Лубнина. Новосибирск, 1999. 208 с.
- Большаков В.А. Нормирование загрязняющих веществ в почве: научный журнал / В.А. Большаков, Т.И Борисочкина, Н.М. Краснова // Химия в сельском хозяйстве. – 1991. – №9. – С. 10–14.
- 3. Овцинов В.И. Влияние загрязнения почв тяжелыми металлами на сельскохозяйственные растения: научный журнал // Агрохимический вестник 2005. №1. С. 29–32.