

INTERNATIONAL CONFERENCE.

ARAL:PAST, PRESENT & FUTURE/TWO CENTURIES OF THE ARAL SEA INVESTIGATIONS

N.M. NOVIKOVA

SCIENTIFIC AND APPLIED PROBLEMS OF THE ORGANIZATION OF THE LANDSCAPE-ECOLOGICAL MONITORING IN SOUTHERN PRIARALYIE

Water Problems Institute RAS Moscow--Saint-Petersburg

LANDSCAPE-ECOLOGICAL MONITORING

The purpose:

Provide scientific-information base for the organization of rational wildlife management and nature preservation, **obtaining of new knowledge and examination of scientific hypotheses**

Tasks:

- Studying tendencies of development of regional ecological factors;
- Revealing the current condition at a landscape level;
- An estimation of a current condition and revealing of the dangerous phenomena and processes;
- The forecast of natural development and at offered actions;
- Recommendations for the organization of sustainable wildlife management and preservation of unique natural complexes and a biodiversity;
- Perfection of methodical and organizational bases of monitoring;
- Checking of existing scientific hypotheses and theories about laws of landscapes dynamics and development new.

HISTORY

- 1980-1985 the state programs of studying and the forecast of change of Aral sea and adjoining territories within the framework of the Academy of sciences of the USSR and Academies of sciences of Kazakhstan and Uzbekistan;
- 1992-2000 within the framework of 22 projects of UNESCO / Germany (BMBF) - «Ecological research and monitoring of the Aral Sea deltas»;
- 2000-2003 NATO project «Sustainable development of Ecology, Land and water Use through Implementation of a GIS and Remote Sensing Centre in Karakalpakstan, Uzbekistan»;
- 2005-... Project GTZ ... «Stabilization and use of the drained bottom of Aral sea in the Central Asia »
- 2005-2009....

THE SAVED UP SCIENTIFIC EXPERIENCE: THEORETICAL POSITIONS

- The ecological-genetic concept of landscapeecological monitoring is developed and approved
- In Priaralyie develops process of climatic desertification initiated by man;
- It is process of natural evolution of landscapes, directed to formation of desert zonal complexes, there are allocated some stages;
- Stages depend on types of landscapes;
- Speed of process of transformation of natural complexes depends on a stage on which was territories to the initial moment;
- Speed of desertification is influenced with regional climatic and hydrological processes;

Regions of South Priaralyie: Ancient deltas of Amudarya: 1. Sarykamyshskayia 2. Akchadaryinskayia Current delta: 3. irrigated; 4 - desertified 5. Plato Ust-Urt; 6 - Kyzylkum Qoragalpogriston

Dashoguz

Regions of Priaralyie, according to prevaling types of landscapes and their changes due to aridization

Components of	Stages		
landscape	Hydromorphic	Subhydromorphic	Automorphic
source of water	flooding, groundwaters, precipitation	ground waters, precipitation	precipitation
groundwaters	0–3.5 m, fresh-brackish	>3.5–5 m, salinized	>5 (10-20) m, high salt content
soil forming processes	swamp, meadow, solonchak	takyrisation	zonal desert
phytomass (T/ha)	75.46-41.27	49.1-8.25	27.05-5.29
production (T/ha/year)	10.7–36.87	25.1-3.05	2.18-1.89
types of succession on the levees	dominants of plant community series on the levees		
xerophytization	Populus ariana, Elaeagnus turcomanica, Tamarix sp., Glycyrrchiza glabra, Alhagi pseudalhagi	Desert tugai communities + ephemerals, <i>Capparis decidua</i> , Salsola dendroides	
halophytization	Tamarix hispida, Aeluropus littoralis, Karelinia caspia, Halostachys caspica, Climacoptera aralensis, C. lanata		
psammofitization by destruction of upper kleyer layer, sands appearing		Haloxylon aphyllum, Salsola orientalis	Ceratoides papposa, Calligonur sp., Salsola richteri, Haloxylon persicum
siltation (aeolian input to depression in the sandy area)		_	Ephemerals and low sub-shrub communities (Artemisia sp.)
types of the successions on the interstream lowlands	dominants of plant commu	unity series on the inter-river lowlands	
xerophytization	Typha angustifolia, Phragmites australis Calamagrostis dubia, Tamarix sp.	Salsola dendroides, Anabasis aphylla, Haloxylon aphyllum	Takyr with algae and moss
halophytization	Limonium gmelini, Salsola sp., Tamarix hispida, Halostachys caspica		_
psammofitization	hillock sands formed by sand accumulation with high content of salt dust, covering by crust, Lycium ruthenicum, Nitraria sp.		Anabasis salsa + ephemerals, Artemisia sp., Calligonum sp., Salsola richterii, Haloxylon persicum
siltation (aeolian input to depression in the sandy area)	_		Ephemerals and low sub-shrub communities (Artemisia sp.)

Stages of the landscapes development within the evolution process of the deltaic landscapes

Stages of the processes and its indicators in the Amudarya delta

- **1985** Beginning of solonchaks degragation, ground waters on depth more than 3 m. - the indicator - *Salsola dendroides*
- **1993** Beginning of progradation processes dissemination of deserted plants - *Haloxylon aphyllum* and *Krascheninnikovia ceratoides*
- 2000 Dissemination of desert "repair" annual species Ceratocarpus arenaria

Designations: 1 – relief (relative heights to the sea-level); 2 – 5 – depth of the layer of maximum soluble salts content (m): 2-1979; 3 -1985; 4 -1993; 5 -1999; 6 – maximum values of soluble salts content (%) in 1999; 7- numbers of key sites and names of plant communities along profile: 1. *Populus ariana-Tamarix ramosissima–Mixteherbosa* 2. *Halostachys belangeriana-Tamarix ramosissima-Ephemerosa* 3. *T. ramosissima– Ephemerosa* 4. *T.ramosissima-Salsola dendroides* 5. *Calamagrostis epigeios-Mixteherbosa*

DIFFERENCE BETWEEN FORECASTING AND REAL PROCESSES

- Local mechanisms and causes applicative processes
- Ecotonal stages

Local applicative factor – disturbance along roads

Results:

Dissemination of the desert plants Ecotonal communities

Speeding of the process of desertification

Haloxylon aphyllum (Minkw.) lljin

Krascheninnikovia ceratoides (L.) Gueldenst.

Local applicative factor – flooding:

Result – short living process

Solonchak after long natural flooding

DRIED SEA BOTTOM -ARALCUM:

<u>Soils</u>: saline, formed deserted sandy, formed brown <u>Vegetation</u>: rarefied thicket serial communities, monocoenoses

Dominates:

Tamarix elongata, T. hispida, T. ramosissima, Halostachys caspica

DRIED SEA BOTTOM

Комплексные дистанционные и наземные исследования осушенного дна Аральского моря

Германское общество технымаскаго сотрудничества Мектосудерственное Координационая Водоковыственное Комиссия Дентралено) Азиц Намер Индорианальный Пането

The main scientific problems :

Absence of the reliable data on stages and speeds of processes that it is important for the forecasting

Consequences of applicative local direct and nondirect anthropogenic impacts for future development of landscape processes

PRACTICAL AND APPLIED PROBLEMS:

- 1. Absence of continuation of the landscapeecological terrestrial monitoring begun in 1970-e years
- 2. Organization
- 3. Objective: Destruction of ecosystem of Badaj-Tugaj reserve because of absence of water

POINTS OF MONITORING - a history

The reserve Badaj-Tugaj

Created for protection tugai and deserted ecosystems with all characteristic species of animals and plants

Current state of the Badaj – Tugaj

БЛАГОДАРЮ ЗА ВНИМАНИЕ

THANK YOU