
The Aral Sea: a palaeoclimate archive

Philippe Sorrel

To cite this version:

Philippe Sorrel. The Aral Sea: a palaeoclimate archive. Mineralogy. Universität Potsdam,
2006. English. <tel-00088994>

HAL Id: tel-00088994

https://tel.archives-ouvertes.fr/tel-00088994

Submitted on 8 Aug 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract 
 

The intracontinental endorheic Aral Sea, remote from oceanic influences, represents an 

excellent sedimentary archive in Central Asia that can be used for high-resolution 

palaeoclimate studies. We performed palynological, microfacies and geochemical analyses on 

sediment cores retrieved from Chernyshov Bay, in the NW part of the modern Large Aral Sea. 

The most complete sedimentary sequence, whose total length is 11 m, covers approximately 

the past 2000 years of the late Holocene. 

High-resolution palynological analyses, conducted on both dinoflagellate cysts 

assemblages and pollen grains, evidenced prominent environmental change in the Aral Sea 

and in the catchment area. The diversity and the distribution of dinoflagellate cysts within the 

assemblages characterized the sequence of salinity and lake-level changes during the past 

2000 years (Chapter III). Due to the strong dependence of the Aral Sea hydrology to inputs 

from its tributaries, the lake levels are ultimately linked to fluctuations in meltwater 

discharges during spring. As the amplitude of glacial meltwater inputs is largely controlled by 

temperature variations in the Tien Shan and Pamir Mountains during the melting season, 

salinity and lake-level changes of the Aral Sea reflect temperature fluctuations in the high 

catchment area during the past 2000 years. Dinoflagellate cyst assemblages document lake 

lowstands and hypersaline conditions during ca. 0–425 AD, 920–1230 AD, 1500 AD, 1600–

1650 AD, 1800 AD and since the 1960s, whereas oligosaline conditions and higher lake 

levels prevailed during the intervening periods. Besides, reworked dinoflagellate cysts from 

Palaeogene and Neogene deposits happened to be a valuable proxy for extreme sheet-wash 

events, when precipitation is enhanced over the Aral Sea Basin as during 1230–1450 AD. We 

propose that the recorded environmental changes are related primarily to climate, but may 

have been possibly amplified during extreme conditions by human-controlled irrigation 

activities or military conflicts (Chapter VI). Additionally, salinity levels and variations in 

solar activity show striking similarities over the past millennium, as during 1000–1300 AD, 

1450–1550 and 1600–1700 AD when low lake levels match well with an increase in solar 

activity thus suggesting that an increase in the net radiative forcing reinforced past Aral Sea’s 

regressions. 

On the other hand, we used pollen analyses to quantify changes in moisture conditions in 

the Aral Sea Basin (Chapter IV). High-resolution reconstruction of precipitation (mean 

annual) and temperature (mean annual, coldest versus warmest month) parameters are 

performed using the “probability mutual climatic spheres” method, providing the sequence of 

 



 

climate change for the past 2000 years in western Central Asia. Cold and arid conditions 

prevailed during ca. 0–400 AD, 900–1150 AD and 1500–1650 AD with the extension of xeric 

vegetation dominated by steppe elements. Conversely, warmer and less arid conditions 

occurred during ca. 400–900 AD and 1150–1450 AD, where steppe vegetation was enriched 

in plants requiring moister conditions. Change in the precipitation pattern over the Aral Sea 

Basin is shown to be predominantly controlled by the Eastern Mediterranean (EM) cyclonic 

system, which provides humidity to the Middle East and western Central Asia during winter 

and early spring. As the EM is significantly regulated by pressure modulations of the North 

Atlantic Oscillation (NAO) when the system is in a negative phase, a relationship between 

humidity over western Central Asia and the NAO is proposed. 

Besides, laminated sediments record shifts in sedimentary processes during the late 

Holocene that reflect pronounced changes in taphonomic dynamics (Chapter V). In Central 

Asia, the frequency of dust storms occurring during spring when the continent is heating up is 

mostly controlled by the intensity and the position of the Siberian High (SH) Pressure System. 

Using titanium (Ti) content in laminated sediments as a proxy for aeolian detrital inputs, 

changes in wind dynamics over Central Asia is documented for the past 1500 years, offering 

the longest reconstruction of SH variability to date. Based on high Ti content, stronger wind 

dynamics are reported from 450–700 AD, 1210–1265 AD, 1350–1750 AD and 1800–1975 

AD, reporting a stronger SH during spring. In contrast, lower Ti content from 1750–1800 AD 

and 1980–1985 AD reflect a diminished influence of the SH and a reduced atmospheric 

circulation. During 1180–1210 AD and 1265–1310 AD, considerably weakened atmospheric 

circulation is evidenced. 

As a whole, though climate dynamics controlled environmental changes and ultimately 

modulated changes in the western Central Asia’s climate system, it is likely that changes in 

solar activity also had an impact by influencing to some extent the Aral Sea’s hydrology 

balance and also regional temperature patterns in the past (Chapter VI). 

 

 



 

Résumé 
 

La Mer intracontinentale endoréique de l’Aral, éloignée de toute influence océanique, constitue en 

Asie Centrale une excellente archive sédimentaire pour des études paléoclimatiques à haute résolution. 

Nous avons effectué une analyse palynologique, sédimentologique et géochimique sur des carottages 

sédimentaires effectués dans la Baie de Chernyshov, située au nord-ouest de l’actuelle Grande Mer 

d’Aral. La séquence sédimentaire la plus complète mesure 11 m et représente les 2000 dernières 

années de l’Holocène terminal. 

 

L’étude palynologique, conduite conjointement sur des assemblages de kystes de dinoflagellés et 

de grains de pollen, a mis en évidence de profonds changements environnementaux en Mer d’Aral, 

ainsi que dans le bassin Aralien. Les variations d’assemblages de kystes de dinoflagellés (diversité, 

distribution des espèces) ont permis d’établir la séquence des variations de salinité et du niveau du lac 

au cours des 2000 dernières années (Chapitre III). En raison de l’étroite dépendence de l’hydrologie 

de la Mer d’Aral aux apports fluviaux de l’Amu Darya et de la Syr Darya, les variations de niveau du 

lac sont étroitement liées à l’apport d’eaux résultant de la fonte des neiges en altitude au printemps. 

Or, l’amplitude de ces apports étant principalement contrôlée par les variations de température 

printanières dans les massifs du Tien Shan et du Pamir au cours de la fonte, les variations de salinité et 

de niveau de la Mer d’Aral traduisent essentiellement des fluctuations de température dans le bassin 

versant au cours des 2000 dernières années. Ainsi, les assemblages de kystes de dinoflagellés 

caractérisent des épisodes de bas niveau de la Mer d’Aral accompagnés d’une forte augmentation de la 

salinité au cours des périodes 0–425, 900–1230, 1500, 1600–1650 et 1800 après J.C., ainsi qu’après 

les années 1960. Inversement, un retour vers des conditions de faible salinité associées à une hausse du 

niveau du lac est documenté pour les périodes intermédiaires. Par ailleurs, la présence de kystes de 

dinoflagellés remaniés des dépôts Paléogène et Néogène alentours caractérise des évènements de 

désagrégation intense des berges lors d’une hausse significative des précipitations sur le bassin 

Aralien, notamment au cours de la période 1230–1450 après J.C. Nous proposons que les changements 

environnementaux enregistrés sont principalement liés à des changements climatiques mais qu’ils ont 

également pu être amplifiés par l’homme lors de conditions extrêmes, via une irrigation non-maîtrisée 

et/ou des conflits militaires (Chapitre VI). En outre, les variations de salinité montrent de fortes 

similitudes avec celles de l’activité solaire au cours du dernier millénaire, notamment pour les périodes 

1000–1300, 1450–1550 et 1600–1700 après J.C. où les périodes de bas niveau du lac correspondent à 

une activité solaire accrue, suggérant qu’une augmentation du bilan radiatif ait renforcé les régressions 

de la Mer d’Aral dans le passé.  

 

 



 

Parallèlement, le contenu du sédiment en grains de pollen a été analysé afin de mettre en évidence 

des changements environnementaux, et notamment des variations d’humidité dans le bassin Aralien au 

cours des 2000 dernières années (Chapitre IV). Une reconstruction quantitative à haute résolution du 

taux de précipitation (moyenne annuelle) et des températures (moyenne annuelle, mois le plus froid 

versus le plus chaud) a été réalisée à l’aide de la méthode dite de “probabilité des sphères climatiques 

mutuelles”, permettant d’obtenir la séquence chronologique des changements climatiques en Asie 

Centrale. Un climat froid et aride domine au cours des périodes 0–400, 900–1150 et 1500–1650 après 

J.C., caractérisé par l’extension d’une végétation de type désertique avec des éléments de steppe. En 

revanche, un climat plus chaud et moins sec apparaît au cours des périodes 400–900 et 1150–1450 

après J.C., caractérisé par une végétation steppique enrichie en plantes exigeant des conditions 

d’humidité plus élevées. Les variations de précipitation enregistrées dans le bassin Aralien au cours 

des 2000 dernières années sont principalement contrôlées par le système cyclonique de la 

Méditerranée Orientale qui fournit l’humidité nécessaire au Moyen Orient et en Asie Centrale à la 

transition hiver–printemps. Ce système cyclonique étant étroitement lié aux modulations de pression 

régulées par l’Oscillation de l’Atlantique Nord (NAO), une relation entre humidité en Asie Centrale et 

le NAO en phase négative est proposée. 

 

Enfin, les sédiments laminés des carottages étudiés ont enregistré des changements marqués de la 

sédimentation au cours de l’Holocène terminal qui révèlent des bouleversements importants de la 

dynamique d’apports du matériel sédimentaire (Chapitre V). En Asie Centrale, la fréquence des 

tempêtes de poussières s’intensifie au printemps lorsque le continent se réchauffe, et est ainsi 

principalement contrôlée par l’intensité et la position de l’anticyclone Sibérien sur le continent. Une 

analyse semi-quantitative du contenu du sédiment en Titanium, révélateur fiable d’apports détritiques 

d’origine éolienne, a permis d’établir la séquence chronologique des variations de la dynamique 

éolienne en Asie Centrale au cours des 1500 dernières années, représentant aussi la plus longue 

reconstruction dans le temps de l’intensité de l’anticyclone Sibérien établie jusqu’ici. Ainsi, une 

intensification de la dynamique éolienne est documentée pour les périodes 450–700, 1210–1265, 

1350–1750 et 1800–1975 après J.C. En revanche, de faibles concentrations en Titanium (1750–1800 ; 

1980–1985 après J.C.) caractérisent une réduction significative de l’intensité de l’anticyclone Sibérien 

et une circulation atmosphérique plus stable. Au cours des périodes 1180–1210 et 1265–1310 après 

J.C., une profonde modification de la circulation atmosphérique s’installe en Asie Centrale. En Mer 

d’Aral, elle se caractérise par une réduction considérable des apports détritiques éoliens. 

En définitive, si l’ensemble des intéractions entre différents systèmes climatiques ont contrôlé les 

changements environnementaux en Asie Centrale et modulé les variations climatiques au cours de 

l’Holocène terminal, il est probable que les variations de l’activité solaire aient eu un impact notable 

sur l’évolution du bilan hydrique de la Mer d’Aral au cours des 1000 dernières années (Chapitre VI). 

 



 

Zusammenfassung 

 

Der Aralsee ist ein intrakontinental gelegenes endorheisches Gewässer fernab von ozeanischen 

Einflüssen, welches ein exzellentes sedimentäres Archiv für hochauflösende Paläoklimastudien in 

Zentralasien darstellt. In der vorliegenden Studie wurden umfangreiche palynologische, mikrofazielle 

und geochemische Analysen anhand von mehreren Bohrkernen aus der Chernyshov-Bucht im NW des 

heutigen Großen Aralsees durchgeführt. Die vollständigste der erbohrten Sequenzen weist dabei eine 

Länge von 11 m auf und beinhaltet näherungsweise die letzten 2000 Jahre des Holozän.  

 

Die hochauflösenden palynologischen Analysen der Studie, welche sowohl die Untersuchung von 

Dinoflagellatenzysten als auch Pollen beinhaltet, zeugen von einschneidenden Umweltveränderungen 

im Aralsee und seinem Einzugsgebiet. Die Untersuchung von Diversität und räumlicher Verbreitung 

der fossilen Dinoflagellatenzysten vermittelt dabei ein genaues Bild von den Salinitäts- und 

Seespiegeländerungen der letzten 2000 Jahre (Kapitel III). Aufgrund der weitgehenden Abhängigkeit 

der hydrologischen Verhältnisse des Aralsees von der Wasserführung seinen tributären Flüsse, hängt 

sein Seespiegel unmittelbar von den Schmelzwasserzuflüssen im Frühjahr ab. Da der 

Schmelzwasserzufluss seinerseits mit den Temperaturveränderungen im Tien Shan und Pamir 

während der Schneeschmelze in Verbindung steht, spiegeln die Paläo-Salinität und der Paläo-

Seespiegel des Aralsees folglich die Temperaturveränderungen im hochgelegenen Einzugsgebiet des 

Aralsees wider. Die Untersuchung der fossilen Dinoflagellatenzysten belegt besonders niedrige 

Seestände und hypersaline Bedingungen während der Perioden 0–425 AD, 920–1230 AD, 1500 AD, 

1600 AD, 1800 AD und seit 1960, wohingegen oligohaline Bedingungen und höhere Seestände 

zwischen diesen Phasen dokumentiert sind. Ferner stellen umgelagerte Dinoflagellatenzysten aus 

Paläogenen und Neogenen Ablagerungen wertvolle Proxies für den Beleg von extremen 

Flächenspülereignissen dar, wie sie beispielsweise 1230–1450 AD aufgetreten und durch sehr hohe 

Niederschläge dokumentiert sind. Anhand der in der Studie erarbeiteten Daten ist davon auszugehen, 

dass die am Aralsee nachgewiesenen Umweltveränderungen im Wesentlichen von klimatischen 

Änderungen induziert wurden, durch historischen Bewässerungsfeldbau oder militärischen Konflikten 

jedoch noch verstärkt werden konnten (Kapitel VI). Darüber hinaus zeigen die 

Seestandsveränderungen eine sehr hohe Korrelation mit der Sonnenaktivität im letzten Jahrtausend, 

wie etwa während den Perioden 1000–1300 AD, 1450–1550 und 1600–1700 AD. Hierbei 

korrespondieren niedrige Seestände und regressive Phasen mit zunehmender Sonnenaktivität und 

daher mit erhöhter Nettostrahlung.  

 

Komplementär zu der Untersuchung von Dinoflagellatenzysten liefert die Pollenanalyse wertvolle 

Klimadaten für das Becken des Aralsees (Kapitel VI). Verschiedene Temperatur- (Jahresmittel, 

 



 

kältester gegen wärmster Monat) und Niederschlagsparameter wurden mit Hilfe der Methode der 

„probability mutual climatic spheres“ quantitative ausgewertet, womit die Klimaentwicklung im 

westlichen Zentralasien der letzten 2000 Jahre nachvollzogen werden konnte. Kalte und aride 

Bedingungen wiesen demnach die durch trockenangepasste Vegetation und Steppenelementen 

geprägten Perioden 0–400 AD, 900–1150 AD und 1500–1650 AD auf. Andererseits traten warme und 

weniger aride Klimabedingungen in den durch niederschlagsbedürftigere Pflanzen gekennzeichneten 

Zeiträumen 400–900 AD and 1150–1450 AD in den Vordergrund. Die Studie zeigt für das Becken des 

Aralsees, dass die Veränderungen im Niederschlagsmuster hauptsächlich vom zyklonalen System des 

östlichen Mittelmeergebietes (EM) gesteuert werden, welches den nahen Osten und das westliche 

Zentralasien mit Feuchtigkeit im Winter und Frühjahr versorgt. Da seinerseits das EM maßgeblich von 

Luftdruckänderungen der Nordatlantischen Oszillation (NAO) während seiner negativen Phase 

reguliert wird, ist ein Zusammenhang zwischen der Feuchtigkeit im westlichen Zentralasien und dem 

NAO anzunehmen. 

 

Außerdem belegen die laminierten Sedimente Veränderungen in den Sedimentationsprozessen 

während des späten Holozän, sowie ausgeprägte Änderungen im taphonomischen Verhalten (Kapitel 

V). In Zentralasien hängt die Häufigkeit der im Frühjahr auftretenden Staubstürme hauptsächlich von 

der Intensität und der Position des Sibirienhochs (SH) ab. Der Gehalt an Titanium (Ti) als Proxy für 

äolischen Eintrag in den laminierten Sedimenten erlaubt die Rekonstruktion von winddynamischen 

Veränderungen in Zentralasien in den letzten 1500 Jahren. Die Studie beinhaltet daher die bislang 

längste Analyse der Variabilität des SH. Hohe Titaniumwerte sprechen für eine stärkere Winddynamik 

während den Perioden 450–700 AD, 1210–1265 AD, 1350–1750 AD und 1800–1975 AD, und 

dokumentieren demzufolge eine stärker ausgeprägtes SH während des Frühjahrs. Umgekehrt belegen 

geringe Titaniumwerte für die Zeit von 1180–1210 AD, 1265–1310 AD, 1750–1800 AD und 1980–

1985 AD einen reduzierten Einfluss des SH. 

 

Zusammengefasst, obgleich die allgemeinen klimadynamischen Prozesse natürliche 

Umweltveränderungen bedingen und letztlich auch Modulationen des westlichen zentralasiatischen 

Klimasystem bewirken, ist es dennoch wahrscheinlich, dass Veränderungen der Solaraktivität 

gleichsam einen Einfluss hatten und bis zu einem gewissen Grad die Wasserbilanz am Aral See sowie 

die regionale Temperaturen in der Vergangenheit veränderten  (Kapitel VI). 
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Introduction 

Chapter I: Introduction 
 

Reconstruction of past climate from palaeoclimate proxy data is important for improving 

constraints on the role and the scope of natural climate variability onto environments. A 

number of efforts have been made to reconstruct variations in Northern Hemisphere 

temperature within the past millennium using well-dated, high-resolution proxy records (e.g. 

Overpeck et al., 1997; Jones et al., 1998, 2001; Mann et al., 1998, 1999; Pfister, 1999; 

Bradley, 2000, 2003; Briffa, 2000; Briffa et al., 2001, 2002; Crowley, 2000; Folland et al., 

2001; Esper et al., 2002a; Crowley and Lowery, 2003; Mann and Jones, 2003; Cook et al., 

2004; von Storch et al., 2004; Moberg et al., 2005). Most of the climate shift events over the 

past 1500 years often coincided with reorganisations of human societies (Buckland et al., 

1995; Cullen et al., 2000; de Menocal, 2001; Haug et al., 2003). Detailed high-resolution 

temporal and spatial patterns of climate change are available for Europe over the last 300–600 

years (e.g. Appenzeller et al., 1998; Luterbacher et al., 2001, 2002; 2004; Büntgen et al., 

2005; Pauling et al., 2005; Casty et al., 2005a, 2005b, 2005c; Jacobeit et al., 2003; Slonosky 

et al., 2000, 2001), in the Artic region (Overpeck et al., 1997) and in northern Asia over the 

past 2000–4000 years (Naurzbaev et al., 2002; Hantemirov and Shiyatov, 2002). However, 

hemispheric-scale reconstructions provide little information about regional scale anomalies in 

both temperature and precipitation. Therefore, studies focusing on reconstruction of specific 

regions are also necessary. To date reconstructions of climate variability during the late 

Holocene are rather scarce for Central Asian areas. They are limited in time (ca. 1000–1300 

yr BP) and often restricted to temperature changes, as based on tree-ring width analyses 

(Esper, 2000; Esper et al, 2002b; 2003). 

 
I.1. Aims of the study  

 

Due to the unsustainable diversion of water resources for irrigation purposes associated to 

a preoccupant degradation and pollution of its ecosystem, the Aral Sea recently became the 

focus of international environmental concerns. The Aral Sea (Fig. 1.1) represents one of the 

few Eurasian continental sites with a complete sedimentary archive that can be used for high-

resolution palaeoclimate studies. Its remote location in the continental interior of western 

Asia, where different climate systems (e.g. the Subpolar Westerly Jet Stream, the Siberian 

High Pressure Cell, the North Atlantic Oscillation) are interlinking, is crucial for unraveling 
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their respective influence on the hydrology in western Central Asia. The hydrological balance 

of the endorheic Aral Sea is strongly dependent on the fluvial inputs from the Amu Darya and 

the Syr Darya, its two main tributaries in the Aral Sea Basin (Fig. 1.1), which account for ca. 

80% of the hydrological input into the Aral Sea. As for comparison, between 1911 and 1960, 

the mean river discharge to the Aral Sea represented 56 km3/year (4.2 km3/year during 1981–

1990), while precipitation totalled only 9 km3/year, groundwater discharges 0–5 km3/year 

(Jarsjö and Destouni, 2004), and the mean evaporation rate 66 km3/year (Zavialov, 2005). At 

a regional scale, past climate variability in the arid Aral Sea Basin may be an important key 

for understanding future climate change, which may affect even more drastically such arid 

and semi-arid regions. Also, understanding past climate change is of great importance to 

evaluate the anthropogenic impact on present-day and future climates in this highly sensitive 

semi-arid region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The Aral Sea, located in Central Asia, with the main tributaries Amu Darya and 
Syr Darya, and the coring locations. 1: Tastubek Bay; 2: Tschebas Bay; 3: Chernyshov Bay. 
Map extracted from NASA World Wind 1.3. 

This thesis is embedded in the international collaborative research project CLIMAN 

(Holocene CLImate variability and the evolution of HUMan settlement in the Aral Sea 

Basin). The project aims to investigate the following tasks: 
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• Determine the sequence of lake-level changes of the Aral Sea during the late 

Holocene. This requires a close collaboration between geoscientists (remote 

sensing), geomorphologists (field observations) and archaeologists (field 

observations); 

• Assess a robust chronology of climate change in the Aral Sea Basin based on a 

multi-proxy approach, i.e., organic- and inorganic sediment core proxies recording 

environmental change at high resolutions; 

• Evaluate the underlying forcing factors regulating climate variability in the Aral 

Sea Basin by comparing with other Eurasian climate records and so, searching for 

atmosphere–biosphere interactions in order to improve our understanding of the 

Eurasian and the Northern Hemisphere climate system; 

• With climate as the dominant forcing factor, assess the history of human 

adaptation in response to environmental change in Central Asia. 

 

In this study, we mainly focus on the second and third tasks of the project CLIMAN. 

Three main purposes were defined: 

 

• Establish a reliable age model as based on AMS 14C dating from sediment core 

macroremains; 

• Establish a multi-proxy dataset from biotic and abiotic proxies for reconstructing 

lake-level changes and hydrological conditions in the Aral Sea, moisture 

conditions in the hinterland associated with vegetation cover, and wind dynamics 

determining detrital inputs in the Aral Sea Basin; 

• Evaluate the main seasonal patterns of past climate variability over western 

Central Asia. Climate variability in the Aral Sea Basin may highlight the climatic 

affinity and possible teleconnections between Central Asia and other Eurasian 

climate regimes. 

 

Past climate variability can be reconstructed using both proxy-based correlations and 

climate quantification methods. However, investigating climatic change as recorded in lake 

sediments is still a challenge. One of the difficulties is to establish reliable age models for lake 

sediments. Additionnally, because (i) each lacustrine environment is basically unique and (ii) 
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various local to regional influences may overprint primary signals, proxy records from lake 

sediments must often be considered differently and transfer models must be recalibrated from 

one ecosystem to the other.  

 
I.2. Climate variability over the Eurasian continent and its influence 

on Central Asia and the Aral Sea Basin 
 

Within the global climate system, the Central Asian sector defined in this study as the area 

from 30°N–55°N to 50°E–70°E in the Eurasian continent (30°N–70°N to 10°W–90°E), 

constitutes an issue of particular concern within the context of regional and global climate 

variability. The Asian continent exerts a strong influence on global circulation patterns, being 

a region of unambiguous warming during the last decades (Hansen et al., 1988). The 

dominant synoptic systems which control and determine seasonal pressure, temperature 

gradients and precipitation in Asia are the Mediterranean Low-pressure Cell, the Siberian 

High pressure Cell and the locally-driven surface highs (lows) during winter (summer). 

 

The Mediterranean Low-pressure Cell 

The Mediterranean basin is considered to be the most cyclogenetic area in the world 

usually favouring development of weak low-pressure systems. The depressions occurring over 

the Mediterranean and associated cyclonic tracks to the NE have been subject of extensive 

climatological research (Alpert et al., 1990a; Chang, 1972; Karaca et al., 2000; Katsoulis, 

1980; Maheras, 1983a, 1983b, 2001, Wigley and Farmer, 1982). The formation of lows over 

this region in winter is associated with cold air invasion into the Mediterranean (Alpert and 

Reisin, 1986; Tayanç et al., 1997; Kahana et al., 2002; Ziv et al., 2006), being connected with 

positive vorticity advection at the upper levels (Kallos and Metaxas, 1980), and stems from a 

thermal contrast between the cold dry air and the relatively warmer seawaters. Regions of 

enhanced cyclone activity during winter and spring are the interior of the Asia Minor, the 

eastern edge of the Black Sea and the Caspian Sea (Maheras et al., 2001) (Fig. 1.2). 

Subsequently, maximum of precipitation is recorded during winter and spring over this area 

(see Fig. 1.4i). 

 

 

 

Figure 1.2: Low-pressure fields moving over the Middle East and western Central Asia, 
bringing showers and storms over these regions (26.03.2003). Map extracted from NOAA site 
http://www.noaa.gov/
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The Siberian High Pressure Cell 

The Siberian High (SH) (Fig. 1.3) is a semi-permanent and quasi-stationary anticyclone 

usually centered over northern Mongolia, but often spreads over a very large part of Asia 

(Panagiotopoulos et al., 2005) including the Aral Sea Basin (Fig. 1.3a). It is the coldest and 

most extensive centre of action of winter-time (October–April) general circulation of the 

atmosphere (Lydolf, 1977; Sahsamanoglou et al., 1991). The SH is characterized by a 

maximum in the winter mean sea-level pressure (SLP) in the Northern Hemisphere (Fig. 

1.3b). However, it shows no strong relationship to other climatological SLP centers, apart a 

weak negative correlation with southern Europe (Fig. 1.3b) where a stronger SH enhances 

cyclogenesis in the Mediterranean region. The SH originates predominantly from the 

intensive radiative cooling of the lower troposphere above the snow-covered of Asia, and its 

intensity correlates closely with sea-surface temperature (Panagiotopoulos et al., 2005). 

Correlation between the SH index and different wind tropospheric fields evidences that the 

Aral Sea Basin is significantly influenced by the extension and strength of the SH (Fig. 1.3c). 

According to Panagiotopoulos et al. (2005), significant teleconnections exist as well between 

the SH and westerly jet streams on one hand, and with the winter East Asian monsoon on the 

other hand as further reported from Takaya and Nakamura (2004). Its influence on the 

Eurasian snow cover has been, however, controversially discussed (Clark et al., 1999; Cohen 

and Entekhabi, 1999). Whereas an intensification of the SH since the 1960s has been 

suggested by Mokhov and Petukhov (1999), Sahsamanoglou et al. (1991) and more recently 
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Panagiotopoulos et al. (2005) provided compelling information that document a clear 

decreasing trend in the SH intensity during the past 30 years. According to Gillett et al. 

(2003), this trend may be even strengthened in near future due to increased concentrations in 

greenhouse gases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 1.3: The Siberian High Pressure Cell (modified after Panagiotopoulos et al., 2005). a: 
Winter (DJF) sea-level pressure (SLP) in January averaged over 1900–2001. b: Correlation 
of Siberian High index with sea-level pressure (Trenberth, 1899–2001). c: Correlation of the 
SH index (mean SLP) and meridional winds at different levels of the troposphere from 
NCAR/NCEP (1948–1998). 

With the purpose to describe the climatology of the main climate variables for the Central 

Asian sector, Figure 1.4 presents observed surface climate data for the winter and summer 

temperature (a–b), global radiation (c–d), wind speed (e), number of frost / wet days per 

month (f, i–j), cloud cover (g–h) and precipitation (k–l) during the second half of the 20th 

century (1961–1990). 
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Figure 1.4: Temperature, global radiation, wind speed, number of frost / wet days per 
month, cloud cover and precipitation climatologies for winters (DJF) and summers (JJA) 
over the Eurasian sector. a–b: Averaged land surface mean temperature 1961–1990 for 
DJF and JJA, respectively (shadings, in °C); c–d: Same as a–b but for averaged global 
radiation 1961–1990 (in W/m2); e: Averaged wind speed 1961–1990 for DJF (in m/s); f: 
number of frost days per month 1961–1990 for DJF; g–h: Same as a–b but for cloud 
cover 1961–1990 (in %); i–j: Same as a–b but for the number of wet days per month 
1961–1990; k–l: Same as a–b but for land surface precipitation 1961–1990 (in mm/day). 
The data are from http://ipcc-ddc.cru.uea.ac.uk/java/visualisation.html. The Aral Sea 
Basin (Central Asia) is marked with the red rectangle. 

The winter temperatures yield a northeast to southwest divide over the Eurasian continent, 

with warmer conditions in Western Europe and around the Mediterranean due to the influence 

of the surrounding water masses (Fig. 1.4a). The deserts and semi-deserts of Central Asia 

have a strong continental climate. The temperature pattern for winter is largely influenced by 

high pressure resulting from a cold anticyclone centered over eastern and northern Asia (i.e., 

the Siberian High) with pronounced negative temperatures from 0–-15°C in average up to -

40°C for the minimal values (Lioubimtseva et al., 2005). This has been often associated to a 

prolonged period of freezing conditions with up to 25–30 frost days per month (Fig. 1.4f). At 

the transition between winter and spring, low temperature lead to a steepening of the pressure 

gradients (not shown here) which are responsible for enhanced wind dynamics (Fig. 1.4e) and 

numerous dust storms in Central Asia (Orlovsky et al., 2005). The global radiation is 

considerably reduced during winter as compared to the summer values (Fig. 1.4c–d), the 

highest in the whole Eurasian area. In the winter precipitation sketch (Fig. 1.4k), the Atlantic 

and Mediterranean region that are persistently influenced by the westerlies are wet regions. 

Precipitation in the deserts of Central Asia mostly occur between December and March–April 

(Fig. 1.4k). They depend highly on the position of the Siberian High and the mode of 

atmospheric circulation (Aizen et al., 2001; Lioubimtseva et al., 2005; Zavialov, 2005), and 

are largely controlled by shifts of the westerly cyclonic circulation. Rain is generally brought 

by the depressions which develop over the Eastern Mediterranean region during winter and 

spring (Maheras et al., 2001, Fig. 1.2), migrate northeastwards, and regenerate over the 

Caspian Sea (Lioubimtseva, 2002; Maheras et al., 2001). This results in an enhanced cloud 

cover in winter and early spring as seen in Fig. 1.4g and thus, a higher number of wet days 

(Fig. 1.4j). Over the past 20 years, a net deficit in monthly precipitation has been recorded in 

Western and Central Asia (Fig. 1.5). However, within the Aral Sea Basin, a great spatial 

variability in precipitation trends can be observed at the landscape scale between the different 

meteorological stations (Neronov, 1997), and seems to be controlled mostly by land use 

(irrigation) and land cover characteristics. Two other important controls on precipitation 
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changes over Central Asia are the levels of the Caspian and the Aral seas and their 

contribution of moisture and heat to the lower atmosphere, especially during summer when 

evaporation greatly intensifies (Lioubimtseva et al., 2005). 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.5: Monthly precipitation anomalies over Central and Southwest Asia (25°N–42°N; 
42°E–70°E) for the period January 1951–September 2001. Modified after Agrawala et al. 
(2001): IRI Special Report. 

During summer, the climate variability and pressure gradients are weaker, as the influence 

of the Siberian High diminishes. The temperature distribution yields relatively high averaged 

temperatures over continental Europe, and very high temperatures over Central Asia with 

values similar to those in northern Africa (25–30°C; Fig. 1.4b). Within the Aral Sea Basin, the 

average July temperatures are about 32°C with a maximum of 52°C in the eastern Kara Kum 

(Lioubimtseva et al., 2005). Meteorological data series show a steady increase of annual 

temperatures (1–2°C) over the region during the 20th century (see Figs. 2–3 in Lioubimtseva 

et al. (2005) for Tashkent, Repetek and Bayramaly stations). This increase is regarded as to be 

the result of a decreasing influence of the southwestern periphery of the Siberian High during 

winters and the intensification of summer thermal depressions over Central Asia. High 

summer temperatures probably stem also from a considerably increased radiative warming 

with highest values centered over the Aral Sea Basin (Fig. 1.4d). In the summer precipitation 

map (Fig. 1.4l), the wettest regions correspond to the British Islands and northern Europe, 

whereas the southern parts of Europe are relatively dry and influenced by the Azores 

subtropical High. In Central Asia, the cloud cover (Fig. 1.4h) is considerably weakened 

during summer. Coevally, precipitation are extremely low between June and August (Fig. 

1.4l), resulting in a frequency of 1 to 4 wet days per month in average from 1961–1990 (Fig. 

1.4j). For more details on the twentieth century climatology and current trends, we refer to 

Lioubimtseva et al. (2005). 
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I.3. Teleconnections 
 

To evaluate the impact of broadly recognized modes of climate variability affecting the 

global system on the climatology of western Central Asia is still a challenge. NAO and ENSO 

predominantly affect climate variability within Europe and the Middle East, most particularly 

by determining seasonal distribution of temperature and precipitation (see Hurrell, 1995; 

Hurrell & van Loon, 1997; Thompson et al., 2003; Wanner et al., 2001 and Diaz et al., 2001 

for a review). Such modes of climate variability can, therefore, be expected to exert an 

influence, even moderate, on the climate in Central Asia, and more likely on precipitation. 

 

The North Atlantic Oscillation (NAO) 
 

The impact of the NAO in the European weather system has been widely investigated 

(Hurrell, 1995; 1996; Hurrell & van Loon, 1997; Hurrell et al., 2001; Ulbrich & Christoph, 

1999; Ulbrich et al., 1999; Xoplaki et al., 2004). However, its influence onto the climate in 

the Eastern Mediterranean (e.g. Ben-Gai et al., 2001; Eshel et al., 2000; Eshel & Farrell, 

2001; Eshel, 2002; Ziv et al., 2006), the Middle East (Cullen & de Menocal, 2000; Touchan et 

al., 2003) and Central Asia (Aizen et al., 2001) is still intensively discussed. During low 

(negative phase) NAO winters, the sub-tropical sea-level pressure (SLP) gradient between the 

Iceland Low and the Azores High is weakened and Atlantic westerlies assume a more zonal 

trajectory, bringing moister and warmer conditions over the Mediterranean region (Hurrell, 

1995; Hurrell & van Loon, 1997; Hurrell et al., 2001) and even further east towards the 

Caspian Sea (Cullen et al., 2002). Correlation analyses between atmospheric circulation 

patterns and regional-averaged precipitation showed that a negative (positive) difference in 

anomalies of sea-level pressure between the Azores and the Iceland is favourable 

(unfavourable) for precipitation development over the middle plains of Asia (Aizen et al., 

2001). Mann (2002) further reported that NAO-related interdecadal to centennial-scale 

variability could play a principle role on the climatology of Middle Eastern regions. 

 
The Arctic Oscillation (AO) 

 

The influence of the Arctic Oscillation (AO), the leading mode in the Northern 

Hemisphere wintertime circulation pattern (Thompson & Wallace, 1998; 2000; Wallace & 
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Thompson, 2002), on climate change in Central Asia has not been thoroughly studied yet. 

However, relationship between AO variability and SST and surface wind over the Middle 

East during winter was evidenced by Rimbu et al. (2001) from winter time series of coral 

δ18O record in the Red Sea. Along with strong continental conditions during a positive AO 

phase, the Red Sea and EM regions receive cold and dry air from the North (see also Fig. 8d 

in Aizen et al., 2001), leading to lower SST in respective areas. 

Though the AO correlates strongly with the NAO (Serreze et al., 2000), the AO captures 

more of the hemispheric variability than the NAO does (Mac Donald et al., 2005). The AO is, 

therefore, strongly correlated with Eurasian temperatures (Thompson & Wallace, 2000). The 

relationship between winter AO and 1000 h-Pa air temperature over Central Asia is indeed 

strong for DJF, with R > 0.4 (significant at the 97% level) in the northern part of the Aral Sea 

Basin during the period 1958–2001 (Fig. 1.6A). This may have had important consequences 

on the precipitation of snow over the region during winter as for the duration of the cold 

season, thus controlling the onset of snow melt during spring. An increase in the AO index is 

indeed believed to result in negative snow-cover anomalies over Eurasia (Serreze et al., 

2000), as reported for the period 1972–1997 when the snow cover in Eurasia sharply declined 

(Mac Donald et al., 2005). The snow-cover anomalies can in turn induce large-scale 

dynamical responses and affect winter-time circulation in the Northern Hemisphere (Cohen & 

Entekhabi, 2001), hence constituting feedbacks. Over half of the changes in surface air 

temperature observed in Eurasia since the 1970s have been ascribed to the AO (Serreze et al., 

2000). These temperature changes are considered large enough to have an immediate effect 

on polar circulation (Morison et al., 2000), and thus on the Eurasian circulation downstream 

as shown on Fig. 1.6B. Correlation maps of surface and 1000 h-Pa (not shown) meridional 

wind (DJF) and winter AO time series for the period 1958–2001 are in accordance with the 

results of Rimbu et al. (2001). They show significant correlation (R > 0.5) over the Aral Sea 

Basin, reflecting the predominant influence of the AO during winter on midlatitudes from 

Central Asia. As for the air temperature correlation map above, the seasonal averaged 

variables used here were extracted from the NCEP/NCAR reanalysis archive, whereas the AO 

index time-series were taken from the NOAA site http://www.cdc.noaa.gov/correlation/. 

 

 

 

 

 

Figure 1.6: Correlation maps of different climate variables with Arctic Oscillation (AO) 
time series. A: Correlation of 1000-hPa air temperature for December–February (DJF) 
(1958–2001) with December–February AO. B: Correlation of surface meridional wind for 
December–February (DJF) (1958–2001) with December–February AO (extracted from 
http://www.cdc.noaa.gov/correlation/). See text for detail. 
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The El-Niño Southern Oscillation (ENSO) 
 

The ENSO is recognized as a major source of global climate variability (Trenberth et al., 

1998; Diaz et al., 2001). Several authors have attempted to assess the impact of ENSO on 

precipitation in the Eastern Mediterranean Sea and the Middle East (e.g. Kiladis & Diaz, 

1989; Price et al., 1998), and especially in Turkey (Kadioğlu et al., 1999; Kahya & Karabörk, 

2001). Within Central Asia, pionner studies which aimed to detect the influence of ENSO on 

the climate were undertaken by Gruza et al. (1999). According to these authors, the ENSO 

 xii



Introduction 

signal in Central Asia is generally weak. However, statistical relationships based on wavelet 

analyses of daily observational air temperature data in the Aral Sea region reveals peaks in the 

frequency spectrum of 5–6 years which can be linked with ENSO (Khan et al., 2004). The 

relationship with ENSO is prominent in the northeastern part of the Aral Sea region, but much 

weaker in other parts of the region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Correlation maps of 1000-hPa geopotential height for December–February 
(DJF) (1949–2005) with Southern Oscillation Index (SOI) time series. Index leads by one 
month (November–January; A) and one season (September–November; B) (extracted from 
NOAA site http://www.cdc.noaa.gov/correlation/). See text for detail. 
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To illustrate the connection between ENSO and different atmospheric fields within Central 

Asia, we use correlation maps based on midwinter month (i.e. December–February or DJF) 

averages, as the influence of ENSO on Middle Eastern climates is generally more pronounced 

during winter (Kiladis & Diaz, 1989; Kadioğlu et al., 1999; Karaca et al., 2000). The monthly 

/ seasonal averaged variables used in this analysis were extracted from the NCEP/NCAR 

reanalysis archive (Kalnay et al., 1996; Kistler et al., 2001) and the Southern Oscillation 

Index (SOI) time-series were taken from NOAA site http://www.cdc.noaa.gov/correlation/. 

Regarding the study period (54 years) and assuming that the monthly / seasonal values of the 

atmospheric fields are not serially correlated, any correlation of│R│> 0.3 is significant at the 

97% level. Figure 1.7 represents the correlation between SOI time series and 1000-hPa gph 

for the time period 1949–2003. It shows that the connection is more pronounced when a lead 

time of one month (NDJ) rather than of one season (SON) is applied, with a correlation center 

located over the Aral Sea basin (R > 0.3). Similar observations come up for sea-level pressure 

averages calculated across the interval 1949–2005 (not shown). The correlation maps show 

significant correlation (R > 0.3) over the Aral Sea Basin, reflecting the weak, but existing, 

influence of ENSO during winter on midlatitudes from Central Asia. 

 
I.4. Structure of the thesis 

  

The thesis is written in form of three papers (Chapters III, IV and V), preceded by two 

chapters setting the environmental context of this study. 

Chapter II deals with a description of the coring sites where sediment cores were 

retrieved, the composition and lithological properties of the studied material. Methods related 

to inorganic and organic studies are briefly described. A review on previous dating obtained 

on sediment cores from the Aral Sea is given and the chronology established for the present 

study is explained in detail. 

Chapter III is a paper published in Palaeogeography, Palaeoclimatology, Palaeoecology in 

2006. It presents a high-resolution quantitative study on dinoflagellate cysts, the first one 

performed in the Aral Sea. Dinoflagellate cysts assemblages were used to reconstruct the 

sequence of lake-level and salinity variations both reflecting the hydrographic development of 

the Aral Sea during the past 2000 years. Changes in salinity levels in the Aral Sea are linked 

with changes in river run-off from the Pamir and Tien Shan moutains, reflecting temperature 

fluctuations in the high catchment area as revealed from comparison with other 
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reconstructions in Central Asia. The variability and remarkable events of lake-level change 

are further compared with historical reviews in order to unravel the respective impact of 

climate and human on the late Holocene history of environmental change in the Aral Sea. 

Chapter IV is a publication accepted with revision in Quaternary Research. This chapter 

deals with a quantification of climatic parameters and a reconstruction of climate variability in 

the Aral Sea Basin during the late Holocene, as revealed from high-resolution pollen analyses. 

The quantification of climatic parameters is assessed based on the method of the “probability 

mutual climatic spheres” (PCS) method. This study allows to evidence significant changes in 

moisture conditions in the Aral Sea Basin during the past 2000 years. This variability appears 

to be mainly controlled by humidity brought on NE trajectories from the Mediterranean, as 

inferred from comparison with other records from the Eastern Mediterranean region and the 

Middle East. 

Chapter V is a publication accepted with revision in Quaternary Research. It presents a 

coupled high-resolution geochemical and microfacies analysis aiming to detect changes in 

detrital input in the Aral Sea and its consequence on sedimentation. Effort is focused on the 

identification of the forcing controlling wind dynamics and their relation with general 

atmospheric circulation over Central Asia. 

Chapter VI is the synthesis part. It is based first on the basis of a fourth paper 

“Archaeology and Climate: Settlement and lake level change at the Aral Sea” by Boroffka et 

al. (Geoarchaeology, in press) which discuss the role of human activities on the Aral Sea’s 

water balance in the past based on new archaeological findings. Secondly, we expose the most 

important results of this thesis and discuss what kind of forcing is basically controlling 

environmental and climate change in western Central Asia during the past 2000 years. 

In Chapter VII, conclusions are drawn, including a short outlook for future work. 

A CD-ROM gathering dating measurements and different datasets (gamma-ray density, 

magnetic susceptibility and X-ray fluorescence data performed on all sediment cores 

investigated in the frame of the project CLIMAN) is joined to the thesis for data archive 

 

 xv



Chapter II: Material and Methods 

Chapter II: Material and Methods – site location, 

sediment properties and chronology 

 
II.1. Coring sites: the CLIMAN summer 2002 campaign 

 

During the CLIMAN field campaign in July/August 2002 at the northern shore of the Aral 

Sea (http://climan.gfz-potsdam.de), sediment cores were retrieved at 3 different stations from 

the Small and the Large Aral Sea. Site selection was determined using a preliminary seismic 

survey looking for continuous sedimentation deprived of slumping features (Fig. 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Transversal seismic profile from Chernyshov Bay showing the coring location 
(N45°58’581”; E°59°14’461: Core CH1 and N45°58’528”; E°59°14’459: Core CH2) and 
sediment structures. 

It includes three sites offshore (Fig. 1.1): Tastubek Bay (N46°33’340”; E 60°42’298”; 

TAS1), Tschebas Bay (N46°17’868”; E°59°40’040: TSC1 and N46°18’266”; E°59°38’912: 

TSC2), Chernyshov Bay (N45°58’581”; E°59°14’461: CH1 and N45°58’528”; E°59°14’459: 

CH2). Two types of cores were retrieved from the drilling platform. The piston coring 

(http://www.uwitec.ut) allowed for retrieving a composite core up to 11 m in length, 

consisting in sediment cores of 3 m in length with overlapping sections of about 0.5 m. This 

technique, however, hampers in getting the topmost sediments. To complete the sedimentary 

sequence with surface sediments, we used a gravity corer covering for the uppermost 0.5 to 

0.6 m with preserved sediment top features (Kelts, 1978). 
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Both piston and gravity cores were used for macro- and microsedimentology, 

micropalaeontology, XRF screening and radiocarbon dating (14C). For the thesis, though 

lithological description and physical parameters measurements were performed on all 

sediment cores from the 3 coring locations, we only discuss palynological and 

sedimentological data gathered from the cores at Chernyshov Bay (Fig. 1.1) (CH1 and CH2), 

offering the longest sedimentary sequence by far available in the Aral Sea (see Chapters III, 

IV and V). 

 
II.2. Sediment preservation and lithology 

 

Lithological description, photographs and measurements of physical properties (Gamma-

ray density, magnetic susceptibility) were performed directly after core opening on the surface 

of split core halves. Coring quality is generally good though disturbed laminations due to 

coring artefacts (e.g., sea roughness during drilling) may sometimes occur. Sediment lithology 

was described in detail on cores offshore from Chernyshov Bay (CH1 and CH2) (Fig. 2.2), 

Tschebas Bay (TSC1 and TSC2) and Tastubek Bay (TAS1). Sediment consists mostly of 

greyey silty clays and dark organic muds, occasionally with intercalated evaporites (gypsum, 

salt, sometimes mirabilite) revealed from observations on smear slides. Neither erosive 

discontinuity, nor features of bottom traction or turbiditic sediments were observed in the 

different coring sites. Moreover, no slumps, faults, or sediments loads have been recognized.  

 

Chernyshov Bay is situated at the northern tip of the western basin of the Large Aral Sea. 

Echo sounding revealed a shallow bay that is followed by a sharp descent of the sea bottom to 

a 22 m-deep basin (Fig. 2.1). The most striking feature at this location is the occurrence of a 

strong pycnocline and the presence of a huge anoxic water body below it (Friedrich and 

Oberhänsli, 2004), preventing sedimentation from bioturbation. Accordingly, sediments from 

Chernyshov Bay show mostly well-preserved laminations. Cores CH1 and CH2 were 

collected 1m apart at about 1 km from the shoreline, at a water depth of 22 m. A detailed 

lithological description of Core CH1 (Fig. 2.1a), consisting in cores 21, 22, 23 [0–6.1 m] and 

27, 28, 29 [6.1–11.05 m], is given in Chapter V.2.4. Core CH2 (Fig. 2.1b) consists in cores 

30, 31 and 32 [0–6.2 m]. Splicing of cores 30, 31, 32 (Core CH2) and cores 27, 28, 29 with 

overlaps results in the composite section CH2/1, which was investigated for high-resolution 

palynological analyses. 
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Figure 2.2a: Lithology of 
sediment piston Cores CH1 with 
coordinates. Description of 
sediment colour is based upon the 
colour index of the Munsell® Soil 
Colour Chart. Core CH1 consists 
in the splicing of cores 21, 22, 23, 
27, 28, 29.
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Figure 2.2b: Lithology of 
sediment piston Core CH2 
and of gravity core 24 (Fig. 
2.1b), with respective 
coordinates. Core CH2 
consists in cores 30, 31 and 
32; see text for detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A detailed lithological description of Core CH2/1 is given in Chapter III.1.1. The 

correlation between Cores CH1 and CH2 was performed by matching laminations using 

photographs, physical properties and X-Ray Fluorescence (XRF) scanning (Fig. 2.3). 

Sediment cores CH1 and CH2 were continuously sub-sampled for palynological 

investigations after splitting of the cores in two halves. 125 and 35 sediment samples were 

collected downcore for the analyses of dinoflagellates cysts and pollen grains at a resolution 

of about 10 cm and 40 cm, respectively, and stored within plastic boxes in a cool room at 4°C. 

Chemical treatments of sediment samples for extracting and condensing palynomorphs were 

conducted in the laboratory of the University Claude Bernard of Lyon (see Chapter II.3.2.1.). 
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Figure 2.3: Stacked downcore variations in Gamma-ray density (A) and magnetic susceptibility (B) 
showing correlating trends between Cores CH1 and CH2 from Chernyshov Bay. Gamma-ray plots are 
original data at resolution steps of 0.5 cm. MS plots are original data at resolution steps of 0.1 cm 
[608.2–837.6 cm; 1020.1–1102.1 cm] to 0.2 cm (black curves); red curves are smoothed data using a 
51-point running average. C–D: X-Ray fluorescence analyses on Cores CH1 and CH2. C: stacked 
downcore variations in Potassium (K) in Core CH1, at scanning steps of 1 cm-resolution. D: close-up 
interval [4.5–5 m] in Core CH2 showing correlating features for K (upper panel) and Ca (lower 
panel) at different scanning steps: black curves 0.2 cm-; light-grey curves: 40 µm-resolution; red 
curves: smoothed data using a 101-point running average. Note the remarkable anti-correlation 
between K and Ca. The light-grey shading refers to the close-up interval. 

II.3. Inorganic proxies 
 

II.3.1. Physical properties 
 

Gamma ray natural radiation density 
 

Gamma ray natural radiation of bulk sediment (Bodwaker, 1996) was measured using the 

GeoTek device (http://www.geotek.co.uk). We used this non-destructive method on split core 

halves to determine the gamma ray attenuation through the core. The GeoTek device is 

characterized by a gamma ray source and a detector which are mounted across the core on a 

sensor that aligns them with the centre of the split core (Fig. 2.4). 

  

 

 

 

 

 

 Figure 2.4: Schematic representation of the GeoTek device (from http://www.geotek.co.uk). 

A narrow beam of gamma rays is emitted from a 10-milli-curie Cesium-137 source with 

energy mostly of 0.662 MeV. Photons from the 137Cs emitting source pass through the core 

and are detected on the other side. The incident photons are scattered by the electrons in the 

core with a partial energy loss. The attenuation, therefore, is direcly related to the number of 

electrons in the gamma ray beam. By measuring the number of unscattered gamma photons 
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that pass through the core unattenuated, the density of the core can be determined. Gamma ray 

attenuation density measured on cores from Chernyshov Bay (CH1, CH2) was performed at a 

step-resolution of 0.5 cm, and compiled in a CD-ROM for data archive. In this study, Gamma 

ray attenuation density is mostly used for core-to-core correlation purposes (Fig. 2.3A). 

 
Magnetic susceptibility 
 

Magnetic susceptibility (MS expressed as χ) of lake sediments is controlled by the 

concentration and the grain size distribution of ferromagnetic minerals. It is a non-destructive 

method (Fig. 2.4), which provides a valuable tool for detailed correlation of sediment records 

(Thompson et al., 1975; Verosub and Roberts, 1995; Nowaczyk, 2001). The magnetic 

susceptibility is a measure of the ease with which sediments are magnetized when subjected 

to a magnetic field. Sediment that is rich, per unit volume, in magnetizable substances will 

show high readings. In contrast, sediment that is poor in magnetizable substances, and/or 

contain diamagnetic minerals (e.g. organic matter, quartz, feldspars, calcium carbonate) will 

yield low or negative values. Magnetizable minerals include the ferromagnetic minerals 

(strongly magnetizable as for instance magnetite, hematite, iron titanium oxides) and any of 

the paramagnetic minerals (moderately magnetizable including a broad panel of substances all 

of which contain Fe2+, Fe3+, or Mn2+ ions) and other substances. The paramagnetic minerals 

may include clay minerals (chlorite, smectite and glauconite), iron and manganese carbonates 

(siderite, rhodochrosite), ferromagnesian silicates (olivine, amphiboles, pyroxenes, etc.), as 

well as a variety of ferric-oxyhydroxide mineraloids. The magnetic assemblage in sediments 

is typically composed of particles originating from erosion in the catchment (detrital input), 

in-situ dissolution and authigenesis of magnetic carriers (Berner, 1980; Snowball, 1993; 

Williamson et al., 1998). 

MS was measured directly after core opening on the surface of split core halves with a 

Bartington MS2E sensor (GFZ Potsdam) at a resolution of 1 to 2 mm. The Chernyshov Bay 

MS record shows moderate variations in amplitude and frequency, with generally low values 

that reflect the signature of the catchment area. Admittedly, the source area of the detritics is 

mainly confined to the surrounding Palaeogene marls which also have a very low content in 

magnetic particles (Bolle and Adatte, 2001). At Chernyshov Bay, the coring site is 

characterized by relatively high sedimentation rates within some sedimentary sequences (up 

to 3 cm/ yr) which mainly stem from the overwhelming presence of terrigenous material 
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throughout the core (see Chapter V). For this study, the MS record was applied for high-

resolution core correlation (Fig. 2.3B). 

 
II.3.2. X-Ray Fluorescence (XRF) spectrometry: a proxy of geochemical 

variability of sediments 
 

XRF spectrometry consists in identifying and quantifying the elemental composition of a 

substance (Jenkins, 1999). In XRF spectrometry, high-energy primary X-ray photons are 

emitted from a source and strike the sample, involving the so-called “photoelectric effect”. 

The energy of the emitted fluorescent X-ray photon is determined by the difference in 

energies between the initial and final orbitals of the individual transitions (K, L, or M), and is 

characteristic of a specific element. Therefore, this method enables a non-destructively 

measure of the elemental composition of a sediment. The energy required to knock out 

electrons from their initial orbital depends on the atomic number (N) of the element in the 

periodic table; i.e., the higher N, the higher primary energy required. 

In sediment cores from the Aral Sea, XRF scanning was conducted on split cores at 

different scanning steps. 1cm-resolution runs were performed with a profiling X-ray 

fluorescence scanner (Jansen et al., 1998; Röhl and Abrams, 2000) for gaining the overall 

distribution in K, Ca, Ti, Mn, Fe and Sr on Cores CH1, TSC1 and TAS1 (CD-ROM). 

Additional running at 5 mm and 2 mm-resolution was applied on the same cores to (i) get a 

higher-resolution set of changes in elemental distribution within highly laminated intervals, 

(ii) match dominant trends of variability with prominent changes in sedimentation types and 

(iii) test the reproductibility of the method using different resolution steps (Fig. 2.5). Results 

show that though 1 cm-scanning step runs do not allow to get the resolution required in highly 

laminated intervals where the chemical composition is expected to vary from one sequence of 

laminae to the next, similar trends are obtained when comparing relative rather than absolute 

values at different resolutions. Besides, where a more detailed comparison between XRF and 

sedimentological data was required, scanning steps of 40µm were conducted on selected 

sediment intervals preserved in Araldite®-impregnated polished slabs. XRF measurements 

were used together with MS and microfacies data to infer changes in detrital inputs in Core 

CH1 (see Chapter V). 
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Figure 2.5: Stacked downcore variations of K, Ti, Fe and Ca (cps) in Core CH1, 
respectively, at scanning steps of 1 cm- (black full line), 0.5 cm- (blue full line) and 0.2 cm-
resolution (grey dashed line), showing similar trends. Red thick lines are smoothed curves 
using a 15-point running average. 
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II.3.3. Microfacies analyses: a proxy of sedimentary dynamics  
 

Microfacies analyses were conducted in selected laminated intervals only, with the aim to 

produce implemental high-resolution data to XRF measurements. From thin sections we 

determined semi-quantitatively changes in grain size, thickness of laminations and abundance 

of selected diatom species and searched for possible micro-disturbances in sedimentation. The 

confrontation between microfacies and geochemical data in highly laminated intervals at the 

scale to one-to-one lamination helps to (i) decipher the nature and type of sediments (organic, 

clastic or mixed sediments), and (ii) relate changes into the sedimentary dynamics to internal / 

external forcings of the sedimentary system. Material and methods used for microfacies 

analyses are given in Chapter V.2.2. 

 
II.4. Organic proxies 

 

II.4.1. Dinoflagellate cysts – a proxy of hydrological change 
 

Dinoflagellates are microscopic, unicellular, flagellated and often photosynthetic protists 

generally involved in an asexual reproduction (Fensome et al., 1993). They represent a 

significant part of the primary planktonic production in both oceans and lakes (Wall and al., 

1977). Within their life cycle, many dinoflagellates are characterized by two different states 

with distinct morphology (Fig. 2.6): a planktonic motile stage reflecting favourable 

environmental conditions (spring, summer) and a planktonic / benthic cyst stage which forms 

in autumn when lowered temperatures take place, and remain dormant on the sea floor in 

winter. Dinoflagellates can, however, remain in dormancy during prolonged periods of 

prevailing unfavourable cold conditions. The alternation between the motile and the encysted 

form is, therefore, primarily regulated by seasonal variability of environmental conditions, but 

not restricted to. The resting cyst, whose wall is generally very resistant to degradation, is 

preserved in sediments (Head, 1996). 

Both heterotrophic and autotrophic dinoflagellates are known (Fensome et al., 1993). 

Whereas autotrophic species preferentially thrive in waters enriched in nutrients (delta 

mouths, upwelling currents), heterotrophic species generally feed on phytoplankton cells 

(diatom, dinoflagellates). Certain dinoflagellate species can stand both fresh and salt waters 

although the majority is marine and sensitive to changes in water mass, including temperature 
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and salinity (Marret and Zonneveld, 2003). As a whole, the dinoflagellates have a wide 

temperature (1–35° C) and salinity tolerance (0–50 psu) (e.g. Marret and Zonneveld, 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.6: Schematic diagramm representing the life cycle history of dinoflagellates. 

 

They can be used, therefore, as privileged indicators of changing environmental conditions. 

Numerous recent studies have used the dinoflagellate cysts to reconstruct sea-surface 

conditions (Dale, 1996; Rochon et al., 1999; Matthiessen and de Vernal, 2001; Dale and Dale, 

2002). In this thesis, studies on dinoflagellates rely on the preservation of their cysts in late 

Holocene sediments from Chernyshov Bay. We focus on the ability of dinoflagellate cyst 

assemblages to identify climatically-induced salinity changes in the Aral Sea (Chapter III). 

 
II.4.2. Pollen grains – a proxy of land moisture conditions 

 

Many coniferous and flowering plants produce vast quantities of pollen as part of their 

reproductive cycle. Pollen grains are dispersed widely over the landscape, mainly by winds 
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and rivers over short and long distances. Most of pollen grains fall to the ground or are 

washed from the atmosphere by rain and ultimately become part of sedimentary particles 

accumulating on the floor of lakes. Because plants often have very specific climatic 

requirements and/or tolerances, knowing which plants were growing in an area at a particular 

time also gives reliable information on past climate and landscape conditions. The Aral Sea, 

located in the interior of the large Asian continent characterized by different latitudinal 

vegetation types (e.g. Tarasov et al., 1998a; Tarasov et al., 1998b), represents a privileged 

area for investigating past evolution of landscapes in relation with climate change during the 

late Holocene. However, the richness in pollen grains within recent and modern sediments is 

controlled by different factors: (i) the pollen production that varies from one plant producer to 

the other, (ii) their diffusion in the environment by local / regional transporting factors, and 

(iii) their preservation in sediments. The strategy and method used for pollen analyses must 

be, therefore, clearly assessed with respect to the aim of the study before leading to 

palaeoenvironmental and palaeoclimatic reconstructions. 

Most pollen grains are extremely resistant to decay (Brooks and Shaw, 1968), which 

allows their preservation in large numbers in sediments. In order to extract the pollen grains, 

sediment samples must be chemically processed. The walls of pollen grains (or exine) are 

made of sporopollenin (Rowley and Southworth, 1967), one of the most resistant natural 

chemical substances known, imparting a high acid-proof to the exine and the preservation of 

its characteristic criteria for identification. The strategy used for the chemical treatment of 

samples has been adapted from the method described by Cour (1974). It basically aims to 

remove all organic and mineral components except the resistant palynomorphs (pollen grains, 

spores) and to concentrate them in a residue. The successive steps used for the chemical 

treatment of the pollen samples, together with the method used for the calculation of the 

richness in palynomorphs (Cour, 1974), are presented in detail separately to the thesis (CD-

ROM: “Preparation of palynological slides”). Also given in the CD appendix is the method 

used for the identification and counting of pollen grains under the photonic microscop, 

following the concept of Erdtmann (1966). 

 
II.4.3. Climate quantification and reconstruction based on pollen data 

 

For a quantification of palaeoclimate signals recorded in plant remains, the “probability 

mutual climatic spheres” (PCS) method described in Klotz and Pross (1999) and Klotz et al. 
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(2003, 2004) is applied. Principles and proceedings of this method and the application of the 

PCS method to pollen grain data from Core CH2/1 are explained in Chapter IV.2.4. We then 

refer to this section for detailed information. Results are compiled separately to the thesis 

(CD-ROM for data archive). 

 
II.5. Dating and chronology 

 

Laminated lacustrine sediments are an important tool for studying the palaeoclimatic and 

palaeoenvironmental variability of continental regions because of the large panel of proxy 

data they provide. A prerequisite, however, is the establishment of a precise and reliable 

chronology which is basically crucial to compare data with other high-resolution records and 

to perform correlations. The assessment of a reliable age model for this unique archive of past 

climate that represents the Aral Sea was the first challenge of the thesis regarding the 

poorness of dating by now available on Holocene sediments. 

A number of authors attempted to date palaeoshorelines from the Aral Sea using different 

analytical methods (see Boomer et al., 2000 and references herein for a review). Dating on 

lake sediments were mostly undertaken by Maev and Karpychev (1999) based on 40 

radiocarbon age determinations from two cores (86 and 45) retrieved nearby the central and 

western parts of the Aral Sea, respectively, and Maev and Maeva (1991) from a number of 

cores taken in the central part of the basin (e.g. Boomer et al., 2000). Most of these data, 

however, concern early and mid-Holocene sequences and dating of late Holocene sediments 

(e.g. the past 2000 years) are rather scarce. Such dating have been commonly used for 

palaeontological (Aleshinskaya, 1991; Aleshinskaya et al., 1996), sedimentological 

(Ferronskii et al., 2003) and geochemical purposes (Le Callonec et al., 2005) at generally low 

time-resolution. 

Recently, in the frame of the project CLIMAN, a series of new dating were conducted on 

piston and gravity cores from the Aral Sea. Based on 210Pb and 137Cs measurements, as time 

markers, and using the constant rate of supply (CRS) model (Appleby, 1997), Heim (2005) 

dated the gravity core 24 from Chernyshov Bay to the time frame [1905–2002]. A peak in 
137Cs, recorded both in the gravity core 24 and in core 30 (top Core CH2) at different depths, 

was regarded to be a good correlation tool, reflecting the bomb period at 1963–1964 AD. 

Therefore, by using both 137Cs values and matching laminations, a correlation has been 

established between gravity core 24 and Cores CH1 / CH2, assuming a post-1964 AD age for 
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the upper 0.46 and 0.39 m in Cores CH1 and CH2, respectively. This is concurrent with 14C 

dating obtained at 0.56 m (CH1) and 0.55 m (CH2) which indicate a post-1950 age (expressed 

in pMC) at sediment tops (Table I). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Table 1: 14C dating measurements performed in this study for Tastubek Bay (Small Aral Sea), 
Tschebas Bay and Chernyshov Bay (Large Aral Sea). Measurements were conducted by Dr. 
Tomasz Goslar in the Poznań Radiocarbon Laboratory (Poland). Precision on the dated 
material is given. Shaded values correspond to reworked Corg material whereas green values 
are 14C dating used in the age model. 

 Another recent series of new dating was obtained on Cores Ar-7, Ar-8 and Ar-9 retrieved 

at Chernyshov Bay at about 50 m apart from Cores CH1 and CH2, using terrestrial 

macrofossils (Nourgaliev et al., 2003). The correlation between magnetic susceptibility (MS) 

data from Cores Ar-7, Ar-8, Ar-9 and Cores CH1, CH2 is remarkable (Fig. 2.7). Hence, by 

assuming a modern age at sediment tops, this correlation enables to establish a reliable age 

model for the 6-upper meters of Core CH1 (see Chapter V.2.5) and for the whole Core CH2 

(see Chapter III.2.2). Radiocarbon analyses of drowned saxaul stumps near Barsakelmes 

Island gave an age of 287 ± 5 14C yr BP, corresponding to an important sea-level fall to about 

41 m.a.s.l. (Boomer et al., 2000). This date comes to improve and validates our age model, as 

it corresponds to a noticeable increase in salinity levels (see Chapter III.4.2.). 
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Figure 2.7: Correlation between magnetic 
susceptibility data from Cores CH1 and CH2 
(this study) and Cores Ar-7, Ar-8, Ar-9 
(Nourgaliev et al., 2003) from Chernyshov 
Bay. Black curves represent original data 
with a step-resolution of 0.1–0.2 cm; red 
curves are smoothed data using a 51-point 
running average.

 

To finalize our age model downcore, twenty additional AMS 14C dating on undisturbed 

sediments from Chernyshov Bay were performed (Fig. 2.8). The material selected for dating 

is described in detail in Table 1. Absolute dating was calibrated using the IntCal04 terrestrial 

calibration curve of Reimer et al. (2004). They indicate values with 2 standard deviations 

(95% of confidence). The error bar for some data is quite large and probably stems from the 

small size of the sample. For assessing a reliable chronology below 6 m, dated intervals with 

reworked dead Corg material (see shadings in Table 1) were not included in our age model. 
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They probably reflect erosion of material washed-off from the catchment area during sheet-

wash extremes. By extrapolation of sedimentation rates downcore, we propose that the 

basement of Core CH1 (and CH2/1) correspond to the beginning of the 1st millennium AD, 

and that, therefore, Cores CH1 and CH2/1 represent the past ca. 2000 years (Fig. 2.8). Our 

age model implies important changes in sedimentation rates for Cores CH2/1 (see Chapter 

III.2.2) and CH1 (see Chapter V.2.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.8: Age-depth plot for Cores CH1 (black circles) and CH2/1 (red triangles). 14C 
values marked with * indicate reworked material older than 2000 yr BP. 

 

Due to the lack of dating of living algae samples from the near-shore, no reservoir 

correction can be applied by now on sediments from the Aral Sea. This is presently still work 

in progress. However, regarding the overwhelming dominance of sulphates in the Aral Sea 

(Létolle and Mainguet, 2005) as compared to marine ecosystems where dissolved carbonates 

prevail, we would expect reservoir effects in the Aral Sea to be relatively small. 
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Abstract 

The Aral Sea Basin is a critical area for studying the influence of climate and anthropogenic 

impact on the development of hydrographic conditions in an endorheic basin. We present organic-

walled dinoflagellate cyst analyses with a sampling resolution of 15 to 20 years from a core retrieved 

at Chernyshov Bay in the NW Large Aral Sea (Kazakhstan). Cysts are present throughout, but species 

richness is low (seven taxa). The dominant morphotypes are Lingulodinium machaerophorum with 

varied process length and Impagidinium caspienense, a species recently described from the Caspian 

Sea. Subordinate species are Caspidinium rugosum, Romanodinium areolatum, Spiniferites 

cruciformis, cysts of Pentapharsodinium dalei, and round brownish protoperidiniacean cysts. The 

chlorococcalean algae Botryococcus and Pediastrum are taken to represent freshwater inflow into the 

Aral Sea. 

The data are used to reconstruct salinity as expressed in lake level changes during the past 2000 

years. We quantify and date for the first time prominent salinity variations from the northern part of 

the Large Aral Sea. During high lake levels, Impagidinium caspienense, representing brackish 

conditions with salinities of about 10–15 g kg-1 or less, prevails. Assemblages dominated by L. 

machaerophorum document lake lowstands during approximately 0–425 AD (or 100? BC–425 AD), 
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920–1230 AD, 1500 AD, 1600–1650 AD, 1800 AD and since the 1960s. Because salinity in the Aral 

Sea is mostly controlled by meltwater discharges from the Syr Darya and Amu Darya rivers, we 

interpret changes in salinity levels as a proxy for temperature fluctuations in the Tien Shan Mountains 

that control snow melt. Significant erosion of marine Palaeogene and Neogene deposits in the 

hinterland, evidenced between 1230 AD and 1400 AD, is regarded as sheet-wash from shore. This is 

controlled by the low pressure system that develops over the Eastern Mediterranean and brings moist 

air to the Middle East and Central Asia during late winter and early spring. We propose that the 

recorded environmental changes are related primarily to climate, but perhaps to a lesser extent by 

human-controlled irrigation activities. Our results documenting climate change in western Central 

Asia are fairly consistent with reports elsewhere from Central Asia. 

 

Keywords: Aral Sea hydrology; Late Holocene; Dinoflagellate cysts; lake level changes; glacial 

meltwater discharge; Mediterranean low-pressure system. 

 
III.1. Introduction 

 

The Aral Sea is a large saline lake in the Aral–Sarykamish depression in Central Asia and 

bordered by Kazakhstan and Uzbekistan (Fig. 3.1). After about 14 ka, when the Aral and Caspian seas 

became separated from one another (Tchepaliga, 2004), the Aral Sea level developed a strong 

dependence upon the inflow of its two main tributaries, the Syr Darya and Amu Darya rivers. These 

rivers originate from the highest part of the Pamir and Tien Shan mountains, 1500 km southeast of the 

Aral Sea. Nowadays, the Aral Sea is an endorheic lake with low freshwater inflow from rivers and low 

precipitation due to the extremely arid continental climate (∼100 mm/yr on average; Létolle and 

Mainguet, 1993). As a result of extreme insolation-forced heating leading to desert conditions, the 

mechanical and chemical weathering of sediments is accentuated and erosional processes are 

enhanced. 

During the past 40 years the Aral Sea, which was the fourth largest inland lake in the world, has 

suffered a dramatic reduction in size due to intensive irrigation activities in the hinterland (Boomer et 

al., 2000). As a consequence, its area has diminished more than fourfold, and the volume more than 

tenfold. The lake level has in fact stabilised during the last three to four years, as irrigation has 

decreased (Zavialov, 2005). Nonetheless, the lake level dropped by 22.5 m from its value in 1965, and 

the Aral Sea became split into two major water bodies, namely the Large Aral Sea represented by its 

western and eastern basins which are connected only through a short (3 km) and shallow (8 m) 

channel (Nourgaliev, pers. comm. in Zavialov, 2005), and the Small Aral Sea in the North (Fig. 3.1). 

Today, the lake level is at 30.5 m above sea level (a.s.l.) (Zavialov et al., 2003), whereas it was at 53 m 

a.s.l. in 1960 (Létolle and Mainguet, 1993). As a result of the considerable reduction in water volume 

and the reduced freshwater influx into the Aral Sea, salinity levels have increased more than eightfold.  
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Figure 3.1: Location map of the present Aral Sea (in light blue) and the study area. The orange area 
represents the Aral Sea‘s surface and associated lake levels from the early 1960s, whereas the dashed 
lines represent the former courses of episodic local rivers (after Létolle and Mainguet, 1993). 

 

Surface-water salinity rose from 10.4 g kg-1 in 1960 to more than 80 g kg-1 in 2002–2003 

(Zavialov et al., 2003; Friedrich and Oberhänsli, 2004). The salinification had recently considerable 

consequences for the flora and fauna (Mirabdullayev et al., 2004), thus showing that the Aral Sea 

represents an ecosystem highly sensitive to climate changes and anthropogenic impact. 

The palaeoenvironmental development of the Aral Sea has been studied from sediments since the 

late 1960s. Maev and Karpychev (1999) dated changes in palaeoenvironmental conditions over the 

past 7000 years from two cores retrieved in the central part of the eastern basin. They reported phases 

of major regression during approximately 450–550 AD and 1550–1650 AD. This was further 

confirmed by Aleshinskaya et al. (1996) using palaeontological proxies and by Boroffka et al. (2005) 

from archaeological and geomorphological observations. Boroffka et al. (2005) also documented a low 

lake level from 800 AD to 1100 AD. However, interpretation remains ambiguous for the time window 

1000–1500 AD. Aleshinskaya et al. (1996) suggested deep-water conditions between 1100 AD and 
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1500 AD, whereas historical data point to a severe (or even complete) drying-out of the lake between 

the 13th and the 16th centuries (Boroffka et al. 2005). 

Regarding environmental changes during the Holocene, the present state of knowledge is fairly 

good for the region south of the Aral Sea but rather poor for the northern part. During a field campaign 

in the summer of 2002, sediment cores were retrieved for the first time from the northwest shore of the 

Large Aral Sea (Chernyshov Bay; Fig. 3.1) (www.CLIMAN.gfz-potsdam.de). Using this cored 

material, we present new palaeontological data covering the past 2000 years with a time resolution of 

15 to 20 years. Based on a quantitative analysis of organic-walled dinoflagellate cysts, we provide 

evidence for large palaeosalinity and lake water level variations. 

 
III.2. Material and methods 
 

III.2.1. Sedimentological description 
 

In August 2002, two piston cores (composite cores CH1 and CH2 with respective total lengths of 

11.04 m and 6.0 m) taken with a Usinger piston corer (http://CLIMAN.gfz-potsdam.de) and six 

gravity cores were retrieved from Chernyshov Bay (Fig. 3.1). These cores were collected 1 km from 

the shoreline (45°58'528’’ N, 59°14’459’’ E) at a water depth of 22 m. Composite Core CH1 consists 

of sections 21, 22, 23, 27, 28 and 29, whereas composite core CH2 consists of sections 30, 31 and 32. 

Cores CH1 and CH2 were retrieved from the same coring location at about 1m apart. In this study, we 

conducted our analyses on sections 30, 31 and 32 from Core CH2 and on sections 27, 28 and 29 from 

Core CH1. We then named this composite core section CH2/1, whose total length is 10.79 m. The 

correlation between Cores CH1 and CH2 was performed by matching laminations using photographs, 

physical properties (bulk sediment density, magnetic susceptibility) and XRF scanning. 

Sediments from this site (Fig. 3.2A) consist of greenish to greyish silty clays and dark water-

saturated organic muds with sporadically-intercalated more sandy material. The sediments, which are 

finely laminated, comprise material of variable origin (terrigenous, biogenic and chemogenic) and size 

(from clay and fine silt to fine sand with mollusc shell fragments). Chemical precipitates, such as 

gypsum (G), occur both as dispersed microcrystals in the sediment (G3, G4; Fig. 3.2B) and as discrete 

layers (G1, G2). Neither erosive discontinuity, nor features of bottom traction are observed in the core. 

The laminated character of section CH2/1 indicates probable settling of various autochthonous and 

allochthonous particles from the water column during seasonally varying hydrographic conditions. 

Four lithological units are recognized. Between 0.0 and 4.5 m (Unit 1), the sediment is mostly silty to 

sandy clay with rare macrofossil remains although the uppermost part (0.0–0.5 m) consists of a dark, 

organic, finely laminated mud. Unit 2 is characterized by a horizon of laminated gypsum at its base 

(G2: 1-cm thick) overlain by a 13-cm thick interval of yellowish thinly laminated sediments which in 

turn are abruptly interrupted by brownish laminated sediments (10.5-cm thick interval). 
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Figure 3.2: A: Lithology of section CH2/1 (total depth = 10.79 m). Note the break in core between 
Units 3 and 4 corresponding to a coring gap of unknown extent. B: Microfacies photographs. a: 
Dispersed gypsum crystals in a fine clayey matrix (×200; G4 [0.2–0.3 m]); b: Gypsum crystals 
showing characteristic monoclinic structures and cleavages (×400; G4 [0.2–0.3 m]). 

Downcore, between 4.86 and 9.97 m depth (Unit 3), the sediments consist of a dark silty organic 

mud, often water-saturated and very rich in organic matter including allochthonous aquatic plant 

remains. The plant remains occur both as a dispersed phase in the matrix and as partly decayed 

fragments that constitute organic horizons. These sediments, which are characteristic of dysoxic to 

anoxic bottom-water conditions, are separated from a lower sequence (9.97–10.79 m, Unit 4) by a 

coring gap of unknown extent. Unit 4 consists of thinly laminated grey silty clays that include at the 
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base, laminated gypsum (G1) interbedded with clayey layers. No turbiditic sediments have been 

recognized. The hydrochemical conditions at Chernyshov Bay today are very pronounced. A strong 

pycnocline has developed that maintains and stabilises an underlying body of anoxic deep-water 

(Friedrich and Oberhänsli, 2004) that in turn influences sedimentation by preventing bioturbation 

(except in the topmost part of the core [0.0–0.05 m]). Hence, sediments from Chernyshov Bay show 

well-preserved laminations (Friedrich and Oberhänsli, 2004). 

 
III.2.2. Age model 

 

In section CH2/1, AMS radiocarbon ages were determined using the filamentous green alga 

Vaucheria sp. and CaCO3 from mollusc shells which were picked from the sediment sample and 

carefully washed. Algae were stored in water within a glass vessel. For each sample, AMS 14C dating 

was performed using between 0.2 and 1.0 mg of pure extracted carbon. Radiocarbon ages were 

corrected to calibrated (cal) ages using the IntCal04 calibration curve published in Reimer et al. 

(2004). These determinations resulted in sedimentation rate estimates for the different lithological 

units. A preliminary age model for section CH2/1 is proposed in Figure 3.3. 
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Figure 3.3: Age model for section CH2/1 based on AMS 14C dating on the filamentous green alga 
Vaucheria sp.: 480±120 cal. yr BP, 655±65 cal. yr BP (Nourgaliev et al., 2003); 108.6±0.3 pMC 
(Poz-4753), 1062±110 yr BP (Poz-12279), 1300±30 cal. yr BP (Poz-4762), 1395±25 cal. yr BP (Poz-
4760), 1521±40 cal. yr BP (Poz-4764), 1540±30 cal. yr BP (Poz-4756/59), 4860±80 cal. yr BP (Poz-
4760), on TOC: 730±30 yr BP (Poz-13511), and on CaCo3 of mollusc shells: 1355±30 cal. yr BP 

oz-9662). AMS (P 14C dating was measured in the Poznań Radiocarbon Laboratory (Poland). 
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Reliable dating for the upper 6 m of section CH2/1 was obtained by correlation with the magnetic 

susceptibility record from parallel cores 7, 8 and 9 retrieved 50 m apart from the studied cores 

(Nourgaliev et al., 2003). AMS 14C dating on cores 7, 8 and 9 was performed on the green alga 

Vaucheria sp. This correlation gives an age of 480±120 yr BP (cal. years) at 1.4 m depth for section 

CH2/1. In addition, the time interval represented by Unit 2 is temporally constrained between 655±65 

yr BP (cal. years) at 4.5 m depth and 770 yr BP at 4.86 m for the laminated gypsum, as correlated to a 

decrease in tree-ring width from the Tien Shan Mountains (see Fig. 3.11). This time range is further 

constrained by an age of 730±30 yr BP (cal. years) at 4.65 m. These results imply high sedimentation 

rates during the deposition of Unit 1 (1.6 cm yr-1 from 1.36 m to 4.43 m) but conversely very low 

sedimentation rates for Unit 2 (~0.3 cm yr-1). Supplementary 14C dating performed on Vaucheria sp. 

provide an age of 1062±110 cal. yr BP at 6.34 m, 1300±30 cal. yr BP at 6.94 m and of 1395±25 cal. yr 

BP at 8.25 m, while 14C dating from mollusc shells indicates an age of 1355±30 cal. yr BP at 7.73 m. 

Relatively high sedimentation rates are implied for Unit 3 (~1.4 cm yr-1 from 6.94 m to 10.36 m). 

Based on this adjustment, a linear extrapolation along Unit 3 would suggest an average age of ca. 2000 

yr BP (100? BC to 100 AD) for the base of section CH2/1 (G4) corresponding to a major lake level 

drop. This is consistent with others studies (see Aleshinskaya et al., 1996 on radiocarbon-dated cores 

15 and 86 from the Large Aral, and Boomer et al., 2000, p. 1269) that report on an important lake 

regression at 2000 yr BP. Accordingly, a sampling interval of 10 cm, which represents a time 

resolution of 15 to 20 years, was selected. The top of the core (uppermost 40 cm) has been dated as 

post-1963, as based on a peak in 137Cs at 0.46 m reflecting the climax of the bomb period (ca. 1963–

1964 AD) (Heim, 2005) and this is confirmed by a date on Vaucheria sp. that reveals an age of 

108.6±0.3 pMC at 0.56 m. The dates 4860±80 yr BP at 1.30 m, 1540±30 yr BP at 5.16 m, 1540±30 yr 

BP at 5.90 m and 1521±40 yr BP at 7.40 m, respectively, reflect reworking of older material from 

shore. This is confirmed by reworked dinoflagellate cysts that are conspicuously abundant at these 

depths (see Fig. 3.4). Ages between 1521 and 1540 yrs BP typically represent sediment ages of a high 

lake-level stand. Due to a lack of dating of living algae sampled from the near-shore, no reservoir 

correction can be applied yet. This is work in progress. 

 
III.2.3. Sample processing and palynological analysis 

 

For the study of dinoflagellate cysts, 125 sediment samples each consisting of 15 to 25 g dry 

weight were treated sequentially with cold HCl (35%), cold HF (70%) and cold HCl (35%) after 

Cour’s method (1974). Denser particles were then separated from the organic residue using ZnCl2 

(density = 2.0). After additional washing with HCl and water, the samples were sieved at 150 µm to 

eliminate the coarser particles including macro-organic remains, and then sieved again at 10 µm 

following brief (about 30 s) sonication. The residue was then stained using safranin-o, homogenized, 
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and mounted onto microscope slides using glycerol. Finally, the coverslips were sealed with LMR 

histological glue. 

Dinoflagellate cysts were identified and enumerated under a light microscope at ×1000 

magnification. Between 200 and 400 dinoflagellate cysts were counted for intervals of elevated 

salinity since specimens are generally abundant in such intervals. In other slides, where dinoflagellate 

cysts occur very sparsely, a minimum of 100 dinoflagellate cysts per sample were counted. Light 

photomicrographs (LM) were taken using a Leica DMR microscope fitted with a Leica DC300 digital 

camera. For scanning electron micrographs, residues were sieved at 20 µm, washed with distilled 

water and air-dried onto small circular metal blocks for 2 h, mounted onto metal stubs, and sputter-

coated with gold.  

Calculation of dinoflagellate cyst concentrations per gram of dry sediment was performed 

according to Cour’s method (1974). Dinoflagellate cysts were found in every sample examined and 

preservation varies from poor (crumpling of cysts) to very good in intervals of elevated salinity. The 

dinoflagellate cyst record is shown by relative abundances of each taxon in a detailed diagram to 

emphasize palaeoenvironmental changes in the core (Fig. 3.4). Also shown are concentrations of in-

situ cysts (per gram dry weight), of other palynomorphs and of reworked taxa (Fig. 3.5). Counts are 

archived at the Laboratory ‘PaléoEnvironnements et PaléobioSphère’ (University Claude Bernard-

Lyon 1, France). The dinoflagellate cyst zones (DC-a–DC-f; Figs. 3.4 and 3.5) have been established 

using Statistica 6.0 according to a canonical correspondence analysis performed on selected taxa 

representing variables, in order to determine major ecological trends across section CH2/1. In addition, 

to examine whether relative abundance could be biased by concentration values, a principal 

component analysis was performed on selected variables using the software “Past”. The results 

revealed that no relevant link exists between the different variables. 

 
III.2.4. Ecological groupings of dinoflagellate cysts and other palynomorphs 

 

The in-situ dinoflagellate cyst flora is of low diversity and comprises the following taxa: 

Impagidinium caspienense (Fig. 3.6.1–4), cysts of Pentapharsodinium dalei (Fig. 3.6.5–6), 

protoperidiniacean cysts (Fig. 3.6.7–8), Lingulodinium machaerophorum (Figs. 3.6.13–20 and 3.9), 

Caspidinium rugosum (Figs. 3.7.1–4; 3.10.1–3), Spiniferites cruciformis (Figs. 3.7.5–8; 3.10.4–7) and 

morphotypes assigned to Romanodinium areolatum (Fig. 3.8.1–5). The species are grouped according 

to their ecological preferences. Additional aquatic palynomorph taxa recorded are specimens of the 

chlorophycean (green algal) taxon Botryococcus braunii-type (Fig. 3.10.9) and Pediastrum sp.; the 

prasinophycean (green flagellate) species Hexasterias (al. Polyasterias) problematica (Fig. 3.7.20) and 

genus Cymatiosphaera; loricae of the ciliate order Tintinniida (Fig. 3.7.15–16); and incertae sedis taxa 

including Micrhystridium (a probable algal cyst), Incertae sedis sp. 1 (Fig. 3.7.17–18), Incertae sedis 

sp. 2 (Fig. 3.7.19) and Radiosperma corbiferum (Figs. 3.6.9–12; 3.10.9). 
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Figure 3.4: Relative abundance of dinoflagellate cysts and freshwater algae from the Chernyshov 
Bay section CH2/1, ecostratigraphic zonation based on the dinoflagellate cysts, and schematic 
salinity fluctuations. Each species and morphotype is expressed as a proportion of the total in-situ 
dinoflagellate cysts. Pediastrum sp. and Botryococcus braunii-type are expressed as a proportion of 
the total in-situ dinoflagellate cysts plus freshwater taxa. Reworked dinoflagellate cysts are 
expressed as a proportion of total in-situ dinoflagellate cysts plus reworked dinoflagellate cysts. 
Solid dots indicate rare occurrence (0.5% or less). Each sample represents a ∼10 cm interval of 
core and is plotted by its mean depth. Oligosaline conditions represent salinities of 0.5–5 g kg-1; 
mesosaline conditions salinities of 5–20 g kg-1 and poly- to meta-/ hypersaline conditions salinities 
>20/30 g kg-1. See Figure 2 for explanation of lithology. 

 

• L. machaerophorum (Figs. 3.6.13–20 and 3.9) is a euryhaline species that can tolerate 

salinities as low as about 10–15 g kg-1 (see Head et al., 2005, p. 24–25 for review) and as high as about 

40 g kg-1 based on laboratory culturing studies (Lewis and Hallett, 1997), or indeed higher than 40 g 

kg-1 and approaching 50 g kg-1 as indicated by its distribution in surface sediments of the Persian Gulf 

(Bradford and Wall, 1984). The motile stage of this species blooms in late summer, and has a tropical 

to temperate distribution, with a late-summer minimum temperature limit of about 10–12°C (Dale, 

1996; Lewis and Hallett, 1997). Since L. machaerophorum develops different morphotypes with 

respect to changing temperature (-3 to 29°C) and salinity of surface-waters, it is regarded as a reliable 

indicator of environmental changes in a water body. These morphotypes are characterized by large 

variations in process length and shape (Fig. 3.4). Up to 15 different process types have been found for 
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L. machaerophorum in previous studies (Wall et al., 1973; Harland, 1977; Kokinos and Anderson, 

1995; Lewis and Hallett, 1997; Hallett, 1999). Most of these process types are also found in the late 

Holocene sediments of Chernyshov Bay. Typical specimens (Figs. 3.6.13–16; 3.9.7–8) have processes 

of moderate length (5–15 µm) that taper distally to points, while other specimens may have long 

processes (15–20 µm; Fig. 3.9.1–3) again tapering to points and often bearing small spinules at their 

distal ends. Some specimens with long, curved processes are also seen. Specimens with reduced 

processes (≤5µm; Fig. 3.9.4–6) are found with terminations that are columnar, pointed or bulbous 

(Figs. 3.6.17–20; 3.9.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Concentrations (per gram of dry sediment) of all aquatic palynomorphs counted in 
section CH2/1. Black-shaded curves: 103 grains g-1. Grey-shaded curves: 102 grains g-1. Note that 
concentrations of Botryococcus braunii-type are expressed in a logarithmic scale. Each sample 
represents a ∼10 cm interval of core and is plotted by its mean depth. The zones refer to the 
dinoflagellate cyst ecostratigraphy described herein. See Figure 2 for explanation of lithology. 

• P. dalei (Fig. 3.6.5–6) is a spring-blooming species (Dale, 2001) most common in high 

northern latitudes (Rochon et al., 1999; de Vernal et al., 2001, Marret and Zonneveld, 2003). It 

tolerates a wide range of salinities (21–37 g kg-1) and nutrient concentrations judging from a literature 

compilation of its cyst distribution (Marret and Zonneveld, 2003), although the small size and 

inconspicuous morphology of these cysts suggest the possibility of misidentification. Its presence in 

the Aral Sea core may be related to cool spring surface-waters resulting from cold winters (<0°C). 
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Figure 3.6: Dinoflagellate cysts and other aquatic palynomorphs from Chernyshov Bay. Light 
micrographs in bright-field.  An England Finder reference is given after the sample number. (1–4) 
Impagidinium caspienense Marret, 2004. Ventral view of ventral surface (1–2), mid-focus (3), and 
dorsal surface (4) showing archeopyle; max. dia. 45 µm; sample 1A (M20/3); depth 537.5–540.5 cm. 
(5–6) Cyst of Pentapharsodinium dalei (Indelicato and Loeblich, 1986), upper and mid foci; central 
body max. dia. 23 µm; sample 11A (K20/3); depth 507.5–510.5 cm. (7–8)  Protoperidiniacean cyst, 
upper and low foci; max. dia. 44 µm; sample 9A (N43/3); depth 537.5–540.5 cm. (9–12)  Radiosperma 
corbiferum Meunier, 1910 (= Sternhaarstatoplast of Hensen, 1887), upper (9–10), mid (11) and low 
(12) foci; central body max. dia. 38 µm; sample 9A (M10/0); depth 537.5–540.5 cm. (13–20) 
Lingulodinium machaerophorum (Deflandre and Cookson, 1955). (13–16) Specimen with processes of 
normal length (8–10 µm); upper (13–14), mid (15) and low (16) foci; central body max. dia. 51 µm; 
sample 9A (F35/4); depth 537.5–540.5 cm. (17–20) Specimen with bulbous processes; upper (17–18) 
and mid (19–20) foci; central body max. dia. 46 µm; sample 9A (J51/0); depth 537.5–540.5 cm.

• S. cruciformis (Figs. 3.7.5–14; 3.10.4–7) in our section shows similar morphological 

variability to that described from the Holocene of the Black Sea by Wall et al. (1973) and Wall and 

Dale (1974), and as that described for modern and sub-modern specimens of the Caspian Sea 

(morphotypes A, B and C; Marret et al., 2004). S. cruciformis was first described from Late 
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Pleistocene to early Holocene (23 to 7 kyr BP) sediments from the Black Sea (Wall et al., 1973). The 

ecological affinities of S. cruciformis have already been discussed in several papers because this 

species has been found in other Eurasian water bodies, such as the Black, Marmara and Aegean seas 

(Aksu et al., 1995a, b; Mudie et al., 1998, 2001, 2002; Popescu, 2001), and the Caspian Sea (Marret et 

al., 2004), but also in Lake Kastoria sediments of Late Glacial and Holocene ages (Kouli et al., 2001). 

Its occurrence was also reported from Upper Miocene / Lower Pliocene sediments of the Paratethys 

(Popescu, 2001; Popescu, in press) and the Mediterranean realms (Kloosterboer-van Hoeve et al., 

2001). The shape and size of sutural septa, ridges and processes have been all described as extremely 

variable (Wall et al., 1973; Mudie et al., 2001). Such variations may be linked to fluctuations in 

salinity (Dale, 1996). In this study, specimens assigned to S. cruciformis vary widely in body shape 

and degree of development of sutural septa and flanges. The size of the central body is rather similar 

between specimens (length 40–50 µm; width 30–40 µm). The central body is either cruciform or 

ellipsoidal to pentagonal in shape. The degree of variation in the development of the flanges / septa 

consists of: (1) no development (Fig. 3.10.7), (2) low, fenestrate septa and incipient flange 

development (Fig. 3.10.4), or (3) well-developed and perforate–fenestrate flanges and septa (Figs. 

3.7.5–14; 3.10.5–6). However, there is a full range of intermediate variability. Specimens assignable to 

R. areolatum (Baltes, 1971a, b) are presented in Figure 8 (3.8.1–5). Because of the presence of 

morphologies intermediate between S. cruciformis and R. areolatum in our material, we have grouped 

these two species together in the counts (Fig. 3.4). 

 

• I. caspienense (Figs. 3.6.1–4; 3.10.1–3) and C. rugosum (Fig. 3.7.1–4) have recently been 

described from surface and subsurface sediments of the Caspian Sea by Marret et al. (2004). These 

species are apparently endemic to Central Asian Seas. However, since they might respond to different 

controls, they were plotted separately (Fig. 3.4). I. caspienense is the most abundant species 

encountered in sediments from section CH2/1, although our detailed understanding of its ecological 

requirements is poor. It thrives in low salinity waters (Marret et al., 2004). 

 

• Protoperidiniacean cysts are also frequent (Fig. 3.6.7–8). These are large, smooth, spherical to 

subspherical pale brownish cysts, often folded, and with a rarely visible archeopyle. They are 

considered heterotrophic, and their presence may be related to elevated nutrient levels from river 

inflow. Because they typically feed on diatoms and other primary producers, protoperidiniacean cysts, 

such as those of the genus Protoperidinium, are regarded as paleoproductivity indicators (Dale & 

Gjellsa, 1993; Dale, 1996). Moreover, since they are very sensitive to post-depositional oxygen-related 

decay, they give crucial information on past variations in bottom water and/or pore water circulation in 

the sediment (Zonneveld et al., 2001). As we expect anoxic conditions (oxygen-depleted conditions) 

to have prevailed on the lake bottom during the time window studied (resulting from the highly 

stratified waters), we can therefore here use protoperidiniacean cysts as a paleoproductivity indicator. 
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Figure 3.7: Dinoflagellate cysts and other aquatic palynomorphs from Chernyshov Bay. Light 
micrographs in bright-field. An England Finder reference is given after the sample number. (1–4)  
Caspidinium rugosum Marret, 2004. Upper (1–2), mid (3) and low (4) foci; central body max. dia. 
52 µm; sample 32A3; depth 607.5–610 cm. (5–8)  Spiniferites cruciformis Wall et al., 1973, 
ventral view showing ventral surface (5), mid focus (6–7) and dorsal surface (8); sample 32A3; 
central body max. dia. 52µm; depth 587.5–590 cm. (9–12) S. cruciformis Wall et al., 1973, ventral 
view showing ventral surface (9–10), mid focus (11) and dorsal surface (12); central body length 
51µm; sample 9A (J25/0); depth 537.5–540.5 cm. (13–14) S. cruciformis Wall et al., 1973, low 
focus (13) and slightly lower focus of the dorsal surface in ventral view (14) showing archeopyle; 
central body max. dia. 51 µm; sample 32A3; depth 547.5–550.5 cm. (15–16) Tintinniida? lorica, 
upper (15) and mid (16) foci; total length 53 µm; sample 1A (P27/0); depth 457.5–459.5 cm. (17–
18) Incertae sedis 1, upper (17) and mid (18) foci; central body maximum diameter 77 µm; sample 
1A (P27/0); depth 457.5–459.5 cm. (19) Incertae sedis 2, upper focus; total length 62 µm; sample 
9A (M10/0); depth 537.5–540.5 cm. (20) Hexasterias problematica Cleve, 1900, mid-focus; 
central body max. dia. 38 µm; sample 11A (J31/3); depth 507.5–510.5 cm. 

• Freshwater algal taxa are represented by coenobia of the chlorococcalean (green algae) genus 

Pediastrum, and by colonies of the chlorococcalean B. braunii-type (Fig. 3.10.9). Pediastrum is a 

predominantly freshwater genus (Parra Barrientos, 1979; Bold and Wynne, 1985), although records 
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from brackish habitats are documented (Brenner, 2001). Botryococcus is mostly associated today with 

freshwater environments, although records from brackish habitats are also known (Batten and 

Grenfell, 1996). On the grounds of probability (see also Matthiessen et al., 2000), we regard 

Pediastrum and B. braunii-type as indicators of freshwater discharge into Chernyshov Bay. 

 

In addition to the groups discussed above, other aquatic taxa occur in low quantities. The 

distributions of these taxa are listed individually on Figure 3.5. 

 

• Radiosperma corbiferum (Figs. 3.6.9–12; 3.10.8) is a marine to brackish organism previously 

recorded from the living plankton of the South-Western Baltic Sea (as Sternhaarstatoblast in Hensen, 

1887), Baltic Sea proper including the eastern Gulf of Finland where summer surface salinities are 

below 3 g kg-1 (Leegaard, 1920) and the Barents Sea (Meunier, 1910). It has been reported also from 

modern sediments of the brackish Baltic Sea where it occurs in nearly all samples from a transect 

representing low salinity (<6 g kg-1) in the western Gulf of Finland to relatively high salinity (about 25 

g kg-1) in the Skagerrak (as Organismtype A in Gundersen, 1988, pl. 4, fig. 4). Highest concentrations 

were recorded in the central Baltic Sea where summer surface salinities are around 6–7 g kg-1. 

Elsewhere, R. corbiferum has been reported from modern surface sediments of the Laptev Sea (Kunz-

Pirrung, 1998, 1999), where this species has highest values north and east of the Lena delta and in 

front of the Yana river mouth (Kunz-Pirrung, 1999). It is also known from modern sediments of the 

Kiel Bight, South-Western Baltic Sea (as Sternhaarstatoblast of Hensen, 1887, in Nehring, 1994) and 

from sediments of Guanabara Bay at Rio de Janeiro, Brazil (Brenner, 2001). In the fossil record, R. 

corbiferum has been reported from Holocene deposits of the central Baltic Sea (Brenner, 2001) and 

Last Interglacial deposits of the South-Western Baltic Sea (Head et al., 2005). This distinctive but 

biologically enigmatic organism evidently has a broad salinity tolerance and, although it has been 

reported mostly from brackish-marine environments, factors additional to salinity may also control its 

distribution (Brenner, 2001). 

 

• Hexasterias (al. Polyasterias) problematica (Fig. 3.7.20) has been recorded previously from 

Baffin Bay fjords where it is one of several species that increase towards the meltwater plumes 

(Mudie, 1992). It has also been found in modern sediments of the Laptev Sea (Kunz-Pirrung, 1998, 

1999) and the plankton of the North Sea region (Cleve, 1900) as well as in the same general area (as 

“Röhrenstatoblast” in Hensen, 1887).  It appears to be a brackish or euryhaline species (Matthiessen et 

al., 2000). 

 

• The other aquatic groups (Fig. 3.7.15–16; 3.7.17–18) here identified have either broad or 

uncertain environmental preferences. 
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Figure 3.8: Dinoflagellate cysts from Chernyshov Bay. Light micrographs in bright-field. (1–5)  
Romanodinium areolatum Baltes 1971b, upper (1–2), mid (3) and lower (4–5) foci; central body max. 
dia. 63 µm; sample 32A3; depth 587.5–590 cm. (6) Reworked specimen of Spiniferites validus Süto-
Szentai, 1982 low focus; central body max. dia. 71µm sample 32A3; depth 607.5–610 cm. 

Reworked specimens were found to occur generally within intervals of increased freshwater 

inflow. One group includes Charlesdownia coleothrypta, Enneadocysta arcuata, Deflandrea 

phosphoritica, Phthanoperidinium comatum, Dapsilidinium pseudocolligerum, Areosphaeridium 

diktyoplokum, and Spiniferites spp. (Fig. 3.8.6), and represents Palaeogene reworking. These 

specimens are often distinguished by an increased absorption of safranin-o stain, which probably 

reflects the oxidation history of these reworked specimens. A second group of reworked taxa, notably 

Spiniferites cf. falcipedius, S. bentorii (a single specimen), S. hyperacanthus, S. membranaceous, S. 

ramosus, S. bulloideus, Spiniferites sp., Operculodinium centrocarpum sensu Wall and Dale, 1966, is 

characterized by thin-walled cysts generally not affected by the safranin-o stain. Most of these 

specimens (Spiniferites cf. falcipedius, S. bentorii, S. hyperacanthus, O. centrocarpum sensu Wall and 

Dale, 1966) represent a typical Mediterranean assemblage that occurs in peak frequencies when river 

transport is implicated. We therefore presume that they have been reworked from upper Neogene or 

Quaternary deposits, and their presence is probably linked to Plio–Pleistocene connections between 

the Aral, Caspian, Black and Mediterranean seas.  

 
III.3. Results 

 

Seven ecostratigraphic zones have been distinguished by statistically assessing major changes in 

the composition of the dinoflagellate cyst assemblages (Figs. 3.4 and 3.5). These ecostratigraphic 

zones mostly coincide with the lithological units previously defined. 
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Zone DC-a (10.75–9.97 m) is characterized by the dominance of L. machaerophorum as a whole, 

with maximum total values of 63% at 10.16 cm. Morphotypes bearing short- and normal-length 

processes are abundant (respectively up to 29% and 21% at 10.06 m) while specimens with long and 

bulbous processes are present (respectively up to 6% and 8% at 10.16 m). Frequencies of 

protoperidiniacean cysts fluctuate at relatively high numbers and oscillate between 18% at 9.97 m to 

70% at 10.36 m. Note the reciprocating fluctuations in the frequencies of L. machaerophorum and 

protoperidiniacean cysts. Counts of B. braunii-type depict a somewhat decreasing trend through this 

zone, with relative abundances of 75% at 10.66 m to 57% at 9.97 m, as do numbers of Pediastrum, 

decreasing from 10.6% at 10.75 m to 1.7% at 9.97 m. Abundances of I. caspienense are relatively low 

throughout this zone where they average 10%, when frequencies in cysts of P. dalei display maximum 

values of 18% at 10.75 m. Reworked taxa are also present in low abundances, amounting to 20% at 

10.75 m. Preservation is good throughout this zone and the dinoflagellate cyst concentration is 

relatively low (300–1,300 specimens g-1). The abrupt shift that characterizes the upper limit of this 

zone at 9.97 cm is related not to natural causes but to a coring failure. 

 

Zone DC-b (9.97–6.18 m) is dominated by the species I. caspienense, which averages 70% to 

80% for most of the zone. The previously dominant species L. machaerophorum disappears almost 

totally at the base, but occurs discretely again upwards (10% in total at 6.22 m). Counts of 

protoperidiniacean cysts are relatively constant throughout this zone (10–20%) but nevertheless 

exhibit a marked increase around 7.13 m (41%). Freshwater taxa, as well as cysts of P. dalei, are 

present as well, the latter increasing in abundances from the lower part to the top, attaining 15% at 

6.18 m. Low abundances of C. rugosum (up to 2%) are also recorded. Dinoflagellate cyst 

concentrations are medium (500–7,250 cysts g-1) and the preservation is poor due to crumpling of 

cysts. 

 

Zone DC-c (6.18–4.64 m) documents the co-occurrence of two dominant taxa: L. 

machaerophorum and I. caspienense. While I. caspienense values remain relatively constant 

throughout this interval (50–60% on average), relative abundances of L. machaerophorum depict a 

progressive increase from 14% at bottom up to 91% at 4.64 m in total (respectively minimal and 

maximal values of 0–30%, 0–6%, 0–41.5% and 0–8% from morphotypes with normal length, long, 

short and bulbous processes). Conversely, relative abundances of protoperidiniacean cysts decrease 

from 27% at 6.09 m to 2% at 4.71 cm (0% at 5.14 m). Also, cysts of P. dalei (0–5%) and freshwater 

taxa (<10% on average but 40% at 4.695m) occur in low numbers throughout this zone. S. cruciformis 

including R. areolatum is mostly found in the lowermost part (between 5.99 and 5.69 m; 1–2%) 

although they also occur in low frequencies near the top. C. rugosum is rare (up to 1.5%). Preservation 

is very good in this zone; correlatively the dinoflagellate cyst concentration is relatively high (from 

800 to ca. 22,000 cysts.g-1; Fig. 3.5). There is also a noticeable increase in the concentration of 
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Michrystridium braunii-type organisms throughout this zone (up to ca. 12,000 specimens g-1 at the 

top). The transition from Zone DC-c to DC-d coincides with the transition from lithological Unit 2 to 3 

(Fig. 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Morphotypes of Lingulodinium machaerophorum from Chernyshov Bay. Scanning 
electron micrographs. (1–3) L. machaerophorum with long processes; sample 11A; depth 507.5–
510.5 cm. (4–6) L. machaerophorum with reduced processes; sample 11A; depth 507.5–510.5 cm. 
(7–8) L. machaerophorum with processes of normal length; sample 11A; depth 507.5–510.5 cm. 
(9) L. machaerophorum with bulbous processes; sample 11A; depth 507.5–510.5 cm. 

 

Zone DC-d (4.64–2.62 m) is characterized by an abrupt increase in the relative abundance of 

protoperidiniacean cysts, with a maximum of 95.8% at 3.18 m and frequencies fluctuating around 70% 

between 3.95 m and 2.72 m. Correspondingly, after an abrupt increase in the frequencies of freshwater 

species (notably B. braunii-type) with average values increasing up to 96.5% at 4.59 m, the abundance 

shows a progressive decreasing trend upwards (18% at 2.62 m). Abundances of reworked 

dinoflagellate cysts are also high in this zone, increasing to 75% at 3.75 m and at 3.58 m, before 

progressively decreasing further upwards. Abundances of L. machaerophorum show a stepwise 

decrease from 91% at 4.64 m (ecozonal boundary Zones DC-c/d) to 1% at 2.72 m. Relative 
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abundances of cysts of P. dalei remain very low (<5%) in this zone. S. cruciformis including R. 

areolatum is found in low abundances (1–3%), mostly between 3.08 and 2.62 m. Also present are 

reworked specimens of Spiniferites species, including S. ramosus and S. bulloideus, which occur as 

smooth, thin-walled and delicate specimens. This zone is characterized by very low concentrations of 

dinoflagellate cysts (30–600 specimens g-1) and poor preservation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Dinoflagellate cysts and other aquatic palynomorphs from Chernyshov Bay. 
Scanning electron  micrographs. (1–3) Impagidinium caspienense Marret, 2004. Antapical view 
(1) and dorsal views showing archeopyle (2–3); sample 11A; depth 507.5–510.5 cm. (4–7) 
Spiniferites cruciformis Wall et al., 1973. (4) Cruciform / ellipsoidal body with a well-developed 
and perforated flange, ventral view; sample 24B; depth 49–51 cm. (5) Cruciform body with well-
developed and perforated flange, ventral view; sample 24B; depth 49–51 cm. (6) 
Cruciform/ellipsoidal body with well-developed and perforated flange, ventral view; sample 24B; 
depth 49–51 cm. (7) Cruciform body with incipient flange formed by incomplete development of 
low septa, dorsal view; sample 24B; depth 49–51 cm. (8) Radiosperma corbiferum Meunier, 1910 
(= Sternhaarstatoplast of Hensen, 1887), dorsal view showing pylome; sample 11A; depth 507.5–
510.5 cm. (9) Botryococcus braunii-type; sample 11A; depth 507.5–510.5 cm. 
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Zone DC-e (2.62–0.5 m) is characterized by the replacement of protoperidiniacean cysts (20% on 

average but 4% at 2.32 m) by I. caspienense that becomes conspicuously dominant, with average 

values amounting to 60%. Correspondingly, relative abundances of reworked taxa significantly 

decline (ca. 20% at 2.62 m to 8% at 0.6 m). Frequencies of L. machaerophorum are low throughout 

this zone, although a slight increase is noticeable between 1.36 m and 1.05 m (10–20%). S. 

cruciformis including R. areolatum is more scarcely represented in this zone with contributions never 

exceeding 2% of the dinoflagellate cyst assemblage. Relative abundances of cysts of P. dalei are 

relatively constant (~5%) but conspicuously increase at the top (16% at 0.5 m). Rare cysts of C. 

rugosum are also present (1–3%). Dinoflagellate cyst concentrations are again low (70 to 800 

specimens g-1) although the preservation is much better. 

 

Zone DC-f (0.5–0 m) is characterized by the dominance of L. machaerophorum morphotypes 

whose relative abundances abruptly increase from 0.5 m upwards (normal length processes: 20%; long 

processes: 10%; short processes: 30%; bulbous processes: 1% at the very top). Conversely, relative 

abundances of I. caspienense, protoperidiniacean cysts and morphotypes of S. cruciformis noticeably 

decrease between 0.5 m and the topmost part of this zone, with respective values of 16% at 0.5 m to 

8% at 0 m for I. caspienense, 68% to 23% for the protoperidiniacean cysts and 21% to 7% for the 

morphotypes of S. cruciformis. Cysts of P. dalei progressively disappear with values ranging from 

16% at 0.5 m to 0% at the top. Dinoflagellate cyst preservation is very good throughout this zone but 

the concentration remains relatively low (200–8,000 cysts g-1). 

 

III.4. Discussion 
 

III.4.1. Palaeoenvironmental reconstruction 
 

For the past 2000 years, two contrasting environmental states can be distinguished, each with 

distinct extremes. Transiently highly saline (poly- to meta- / hypersaline) conditions are inferred by 

specific dinoflagellate cyst assemblages characterized by increasing / high abundances of L. 

machaerophorum. Coevally, gypsum starts to precipitate from the water column as soon as the salinity 

reaches 28 g kg-1 (Brodskaya, 1952; Bortnik and Chistyaeva, 1990). Since the motile stage of L. 

machaerophorum commonly blooms in late summer, persistently higher abundances of this species 

may imply sustained levels of enhanced evaporation. Conversely, periods of decreasing salinity (oligo-

/ mesosaline conditions: 0.5–25 g kg-1) are inferred from dinoflagellate cyst assemblages characterized 

by decreasing frequencies of L. machaerophorum (and reduced processes: <5 µm) but increased 

abundances of other autotrophic (notably I. caspiniense) and heterotrophic (protoperidiniacean cysts) 

species. Higher abundances of freshwater algae (Pediastrum, B. braunii-type) imply river discharge 

and periods of freshening of the lake. Furthermore, due to its ecological preferences, P. dalei may 

serve as a proxy for cool spring surface-waters following cold winters. The dinoflagellate cyst record 
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can thus be used to infer surface-water variations in salinity, palaeoproductivity and potentially also 

temperature. Because these changes imply fluctuations in lake water level, coeval changes in 

sedimentation and environmental processes should have occurred. The palaeoenvionmental changes 

are discussed here in terms of contrasting environmental states, notably salinity and lake water levels 

(see Fig. 3.4). 

Today, salt concentrations in the Western Basin have increased to 82 g kg-1 in surface-waters and 

110 g kg-1 at depth (Friedrich and Oberhänsli, 2004). This is reflected in the topmost sediment of 

section CH2/1 by an abrupt increase in abundance of the autotrophic species L. machaerophorum 

(especially morphotypes with long, i.e. >15 µm and normal length, i.e. 5–15 µm, processes; Zone DC-

f) within a trend strengthened at the very top. Based on this observation and the aforementioned 

ecological tolerances of the species, we confirm L. machaerophorum as a reliable environmental 

indicator indicating salinity increase in surface-water layers. It must be understood, however, that the 

motile stage of L. machaerophorum blooms mostly in late summer (Lewis and Hallett, 1997) and its 

cyst record therefore does not necessarily reflect conditions at other times of the year. 

 

4.1.1. Zone DC-a (10.75–9.97 m: 100? BC–425 AD). This zone is interpreted as representing a 

period of low lake level due to evaporative drawdown, indicated by high levels of L. machaerophorum 

and deposition of gypsum (G1). In the Aral Sea, gypsum precipitates out in the water column once 

salinity attains 28 g kg-1 (Brodskaya, 1952; Bortnik and Chistyaeva, 1990), which thus suggests that 

surface water salinity during Zone DC-a was above 28 g kg-1. This is in agreement with the salinity 

tolerance of L. machaerophorum, a species grown in the laboratory in salinities up to 40 g kg-1 (Lewis 

and Hallett, 1997; Hallett, 1999) and whose modern distribution in surface sediments of the Gulf of 

Persia implies a tolerance to salinities exceeding 40 g kg-1 and indeed approaching 50 g kg-1 (Bradford 

and Wall, 1984). L. machaerophorum blooms in late summer, and high numbers indicate sustained 

periods of enhanced summer evaporation during Zone DC-a. At the same time, abundant fresh-water 

algae B. braunii-type and Pediastrum sp., and nutrient-dependent (protoperidiniacean) cysts, also 

characterise this zone and indicate freshwater inflow and increased palaeoproductivity. The source of 

the freshwater inflows remains debatable. These episodic freshwater influxes are possibly linked to 

phases of stronger discharges of the Syr Darya and Amu Darya rivers in late spring / early summer. 

They can also originate from local rivers episodically flushing into the bay (Fig. 3.1), such as the Irgiz 

River in the north (see Aleshinskaya et al., 1996). The seasonal contrast in sea-surface temperatures, 

when judging from significant numbers of cysts of the spring-blooming, cool-tolerant species P. dalei, 

was probably higher between 100? BC and 425 AD, with relatively cool spring surface-water 

temperatures following cold winters. 

 

4.1.2. Zone DC-b (9.97–6.18 m: 425–920 AD). I. caspienense is a brackish species judging from 

its modern distribution in the Caspian Sea, although it overlaps ecologically with L. machaerophorum 
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in the lower range of the latter species’ salinity tolerance (Marret et al., 2004). The dominance of I. 

caspienense in this zone and near absence of L. machaerophorum indicates that the surface water 

salinity was below 15 g kg-1 and probably around 10 g kg-1 (the approximate lower limit for L. 

machaerophorum). The presence of P. dalei and protoperidiniacean cysts is not inconsistent with this 

interpretation, as these species are present in the low-salinity Caspian Sea today (Marret et al., 2004). 

The reduction in salinity during Zone DC-b implies that the lake level had risen substantially 

(although we don’t know if this was gradual or abrupt because of the coring break). Because of the 

low topography of the shorelines around the lake, even a slight rise in lake level will have a substantial 

effect on the position of the shoreline. It will have expanded outwards considerably in all directions, 

and will have moved substantially away from the coring site. This may explain why Zone DC-b has 

low representations of B. braunii-type and Pediastrum sp. – the river discharges supplying these 

allochthonous palynomorphs being further away. 

 

4.1.3. Zone DC-c (6.18–4.64 m: 920–1230 AD). A relatively steady increase in L. 

machaerophorum and reciprocal decrease in the brackish species I. caspienense together evidences a 

progressive salinity increase in this zone, with precipitation of gypsum (G2) near the top. A 

pronounced increase in dinoflagellate cyst concentration within this zone probably signifies increased 

productivity as a response to the rise in salinity. Judging from the presence of gypsum deposits and 

tolerance of L. machaerophorum to high salinities, it would seem that salinities rose above 28 g kg-1. 

The increasing salinity throughout this zone suggests progressive lowering of the lake level. 

 

4.1.4. Zone DC-d (4.64–2.62 m: 1230–1400 AD). This zone represents a progressive decline in 

salinity, as evidenced by a reduction in L. machaerophorum to near disappearance at the top of the 

zone. This was evidently caused by freshwater inflow into the lake, as indicated by abundant B. 

braunii-type. This zone is also characterized by a drastic change in sedimentation from the deposition 

of laminated sediments to silty clays (Fig. 3.2) rather poor in palynomorphs (Fig. 3.5). The coring site 

was clearly receiving significant river discharges because reworked cysts are also abundant. These 

reworked cysts attest to active erosion of Neogene and late Quaternary deposits during periods of 

elevated sheet-wash from shore, and account for the high sediment accumulation rates in this zone (16 

mm yr-1, see also Nourgaliev et al., 2003). Nutrient input at this time is reflected in the high levels of 

protoperidiniacean cysts. However, general productivity is likely to have been lower in this zone than 

in Zone DC-c because of the declining salinity. The low values of I. caspienense seem to be caused by 

reciprocally high values of protoperidiniacean cysts. The progressive decline in both B. braunii-type 

and reworked cysts probably relates to the expansion of the lake as it continued to fill, which will have 

caused rivers supplying freshwater to the lake to recede from the core site. Judging from low numbers 

of the cool-tolerant species P. dalei, spring surface-water temperatures were probably higher between 

1230 AD and 1400 AD, implying relatively mild winters. 
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4.1.5. Zone DC-e (2.62–0.5 m: 1400–1800 AD). The lower part of this zone represents a 

continuance of reduced salinities established at the top of Zone DC-d, marked by low levels of L. 

machaerophorum and high levels of I. caspienense. Conditions were comparable to those in DC-b, 

with salinity probably around 10–15 g kg-1 or slightly less. The abrupt decline in protoperidiniacean 

cysts (causing a reciprocally abrupt increase in I. caspienense) might be explained in terms of a 

gradual lowering of salinity that abruptly exceeded the physiological limit of the protoperidiniaceans. 

Salinities were evidently increasing through the lower part of Zone DC-e (1500 AD and 1600–1650 

AD), as evidenced by increased values of L. machaerophorum and declining values of I. caspienense. 

This seems to have culminated in the gypsum layer G3 in the middle of the zone. The upper part of 

Zone DC-e is more difficult to reconstruct but salinities were certainly above 10 g kg-1, judging from 

the persistence of L. machaerophorum, yet remained brackish given the high values of I. caspienense.  

 

4.1.6. Zone DC-f (0.5–0 m: 1800–1980 AD). A return to progressively more saline conditions, as 

prevails today, is evidenced by an increase in L. machaerophorum, reduced levels of I. caspienense, 

and the formation of gypsum (G4) within this zone. Also cooler spring surface-water temperatures 

following harsher winter conditions are reflected by higher abundances of cysts of P. dalei around 

1900 AD. 

 
III.4.2. Palaeoclimatic changes inferred from dinoflagellate cysts 

 

Numerous previous studies indicate that climates of the Central Asian deserts and semi-deserts 

have experienced different changes from hyper-arid deserts to more humid semi-arid conditions at 

various temporal scales during the late Quaternary and Holocene (e.g. Tarasov et al., 1998; Velichko, 

1989). During the past few thousand years these changes have resulted in multiple lake level changes 

(e.g. Létolle and Mainguet, 1993, Boomer et al., 2000; Boroffka et al., 2005). The present-day climate 

in western Central Asia is mainly controlled by the Westwind Drift carrying moist air to the mountain 

ranges which condenses as snow in the Pamir and Tien-Shan, the catchment areas of the two 

tributaries feeding the Aral Sea. Thus the meltwater discharged by Syr Darya and Amu Darya rivers 

largely controls the hydrological balance in the lake during late spring and early summer. In addition, 

local precipitation occurs during winter and early spring when depressions, developing over the 

Eastern Mediterranean, subsequently move along a northeast trajectory where they may even replenish 

moisture over the Caspian Sea (Lioubimsteva, 2002). This adds to the water balance in the Aral Sea. 

Hence the relative abundance of reworked dinoflagellate cysts is expected to increase during periods 

of elevated sheet-wash from shore caused by enhanced moisture derived from the Mediterranean Sea. 

A third factor of importance, though difficult to quantify is the seasonally changing evaporation rate 

probably due to short-term changes in solar insolation. During the past few thousand years these 

factors have exerted control on the water balance to varying degrees. 

 38



Chapter III: Dinoflagellate cysts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Correlation of palaeoenvironmental changes during the last 2000 years as 
inferred from section CH2/1 with the tree-ring width record of Esper et al. (2002). The salinity 
reconstruction (blue curve) is estimated from the relative abundances of L. machaerophorum. 
Data are plotted according to the age model as detailed in Section 3.2.2 (Fig. 4). G1 to G4 refer 
to chemical precipitates of gypsum in section CH2/1 (see Section 3.2.1; Fig. 2). 
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The dinoflagellate cyst record indicates prominent salinity increases during the intervals ca. 0–425 

AD (or 100? BC–425 AD), 920–1230 AD, 1500 AD, 1600–1650 AD, 1800 AD and the modern 

increase (Fig. 3.11). The lowermost sequence (Zone DC-a, Unit 4), which represents the first few 

centuries AD, characterizes as a whole elevated salinity levels resulting in gypsum precipitation (G1) 

during an important phase of lake level lowering (27–28 m.a.s.l.; see Nurtaev, 2004). During this time 

period, salinity increases mainly occurred at around 0 AD, 100–200 AD and 350–425 AD, probably 

resulting from considerably lowered meltwater run-off supplied by the rivers due to lowered late 

spring and early summer temperatures in the mountains of the high altitude catchment. This is 

contemporaneous with glacier expansion during 2100–1700 yr BP in the northern and western Tien 

Shan (Savoskul and Solomina, 1996) and in the Pamir (Zech et al., 2000). Coevally, at approximately 

2000 yrs BP, a lake level recession is reported from Lake Van (Turkey) based on detailed 

palaeoclimatological studies (Landmann et al., 1996, Lemcke and Sturm, 1996) that demonstrate a 

period of decreasing humidity beginning at about 3500 and culminating at 2000 years BP. Similarly in 

Syria (Bryson, 1996) and Israel (Schilman et al., 2002), declining rainfall leading to dry events is also 

reported at around 2000 years BP. The decrease of rainfall is possibly related to a waning of the low-

pressure system that developed over the Eastern Mediterranean and/or to a shift of the trajectories 

bringing moist air from the Eastern Mediterranean to the Middle East and Western Central Asia. In the 

Aral Sea hinterland, low levels of rainfall are inferred from low abundances of reworked dinocysts 

hence suggesting reduced on-land sheet-wash too. 

 

The causes driving the progressive increase in salinity at ca. 920–1230 AD (Middle Age) may be 

climatically-controlled as well. The increase in salinity is accompanied by a progressive lake level fall 

of the Aral Sea to a large extent, as a pronounced regression was also recorded in Tschebas Bay 

(Wünnemann et al., submitted), and reflects long-term declining discharges from the Syr Darya and 

the Amu Darya rivers around 1200 AD. These results are fairly consistent with the tree-ring width 

records of Esper et al. (2002) (Fig. 3.11) and Mukhamedshin (1977), where several short-lasting 

events can be correlated with our salinity curve. These authors report a notable decrease in ring width 

from 800 AD to 1250 AD, corresponding to a colder phase in the Tien Shan and Pamir-Alay 

mountains, respectively, with lowered late spring and early summer temperatures. This is further 

supported by preliminary pollen analyses conducted on section CH2/1, which reflects cool and arid 

conditions in the Aral Sea Basin after 1000 AD. This aridification of the climate matches relatively 

well with variations observed in the western Tibetan Plateau by Bao et al. (2003). From air-

temperature reconstructions, these authors report warming conditions during the intervals 800–1050 

AD and 1250–1400 AD (Medieval Warm/Wet Period) with a short colder phase during ca. 1050–1250 

AD and especially at around 1200 AD. The salinity increase intervening between 920 AD and 1230 

AD in our record is accompanied by very low abundances of reworked dinoflagellate cysts (Fig. 3.11) 

suggesting again considerably reduced sheet-wash from the shore and thus lowered moisture derived 
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from the Eastern Mediterranean region during the late winter and early spring seasons. This is well-

supported through palaeoenvironmental records from the Eastern Mediterranean Sea (Issar et al., 

1990; Schilman et al., 2002) that document colder conditions resulting in a decrease of evaporation 

and reduced rainfall as inferred from δ18O variations of pelagic foraminifera and carbonate cave 

deposits (Soreq cave, Israel). 

 

A progressive decrease in salinity (oligo-/mesosaline conditions) and a return to higher lake levels 

characterize the period 1230–1450 AD. Coevally, tree-ring width conspicuously increased, growing at 

similar rates during ca. 1360–1370 AD to those observed for the last 100 years (Esper et al., 2002). 

This is further confirmed by Kotlyakov et al. (1991) who reported a warming phase between the 11th 

and 14th–15th centuries, based on tree-ring data from the Tien Shan. Increased growing rates thus 

characterize higher temperatures in the mountains that result in elevated meltwater discharges to the 

Aral Sea in late spring / early summer. Moreover, higher abundances of reworked dinoflagellate cysts 

of Neogene / late Quaternary ages reflect enhanced regional spring precipitation in Central Asia from 

1230–1400 AD. They document the intensified erosion of shore sediments which occurred frequently 

during extreme sheet-wash events linked to intensified low pressure systems over the Eastern 

Mediterranean. The latter is confirmed by Schilman et al. (2002) who documented higher rainfall over 

Israel between 1250 AD and 1500 AD. 

 

Similarly, the two slight increases in salinity as recorded at ca. 1500 AD and 1600–1650 AD from 

the dinoflagellate cysts are probably climatically driven as well. The interval from 1500–1650 AD 

includes the coldest decades according to the mean annual temperature reconstruction for the Northern 

Hemisphere (Bradley, 2000). New archaeological findings from the south Aral Sea (Boroffka et al., 

2005, Shirinov et al., 2004) indicate that the lake level lowered to as much as 31 m a.s.l. at that time. A 

similar brief drying episode has been reported at about 1650 AD by Boomer et al. (2003) based on 

their studies on ostracods. Besides, these events are well-constrained with other records from Central 

Asia. Two successive decreases in tree-ring width are reported from Esper et al. (2002) between 1500 

AD and 1600–1650 AD. These events match well with two salinity increases in the Aral Sea (Fig. 

3.11) and reflect reduced meltwater inflow from the catchment area. This also closely matches a cooler 

phase from the Western Tibetan Plateau at ca. 1500–1550 AD and 1600–1650 AD when glaciers 

advanced on the southern Tibetan Plateau (Bao et al., 2003). We thus propose that this event widely 

expressed north of 35°N may correspond to a short-lived Little Ice Age signature in sediments from 

the Aral Sea. 

After 1650 AD, salinity slightly fluctuated around lower levels (oligo-/mesosaline conditions) 

suggesting higher lake levels up to 1900 AD, with nevertheless a short-lasting salinity increase around 

1800 AD. This is again consistent with the tree-ring record for this time window (Esper et al., 2002), 

where climatic conditions appear relatively favourable for growth, except around 1800 AD where a 
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decrease in the tree-ring width can be observed. Precipitation frequency, as inferred from the reworked 

dinoflagellate cysts, fluctuated slightly during this period, with probably higher rainfall at ca. 1650 and 

1700 AD, but declined afterwards. Near to the top of section CH2/1, a strong environmental shift 

(Zone DC-f; Figs. 3.4 and 3.11) documents the onset of the modern lake level regression. Though this 

disaster is mostly due to the intensification of irrigation in the hinterland since the early 1960s, 

instrumental data already document a lake whose level was starting to lower in the late 1950s 

(Krivonogov, pers. comm., 2005). 

 
III.4.3. Human influence on hydrography 

 

Climate variability is probably the dominant factor controlling the hydrology in western Central 

Asia and thus the salinity in the Aral Sea, but one might expect human influence (irrigation activities) 

too also have exerted an important role in this densely settled region along the Silk Route during the 

past 2000 years. Since Early Antiquity (4th–2nd centuries BC) up to the pre-Islamic Middle Age (4th–

6th centuries AD), water from the Syr Darya and the Amu Darya rivers has been used on a large scale 

for irrigation, mostly in open canals (see Boroffka et al., 2005, in press). According to Létolle and 

Mainguet (1993), the hydraulic installations on the Amu Darya were completely destroyed after the 

invasion of Mongol warriors (the Huns Hephtalites) around 380–400 AD. Thus at that time the Aral 

Sea was reported to be cut-off from its main source of freshwater. Historical reports from Greek 

sources (Barthold, 1910) further indicate that the Amu Darya discharged into the Caspian Sea during 

this period. However, this event may not be at the origin of the lake regression observed at ca. 2000 

years BP because a time lag of almost 400 years would be implied. Instead it may have only amplified 

the retreat of the water body witnessed by an aridification in Central Asia. Similar considerations may 

be regarded concerning the period 920–1230 AD (Zone DC-c), which records the Middle Age lake 

regression. Although irrigation gradually declined up to the 13th century AD (Boroffka et al., 2005), 

historical reports document a total destruction of the hydraulic installations in the Khorezm region 

after Genghis-Khan’s invasion documented at 1221 AD (Létolle and Mainguet, 1993). This 

catastrophic event led again to a severing of the Amu Darya from the Aral Sea, which was reported as 

discharging into the Caspian Sea at that time. Nonetheless, our dinoflagellate cyst record rather 

reflects a gradual regressive phase which would not match with a catastrophic event resulting from the 

destruction of dams in the Amu Darya delta. We thus propose that the progressive lake level lowering 

inferred for the period 920–1230 AD is again most probably climatically driven, but that human 

activities might have further strengthened the lake level fall. 
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III.4.4. Conclusions 
 

This is the first ecostratigraphic study using dinoflagellate cysts from the late Quaternary of the 

Aral Sea and has led to an improved understanding of the mechanisms that control environmental 

changes in the Aral Sea during the Late Holocene. It has also helped to unravel the influence of 

climate and anthropogenic activities on the hydrographic development of the Aral Sea during the past 

2000 years. The results suggest that the successive lake level fluctuations are indeed climatically 

triggered, and result from different factors controlling the water balance in Central Asia, notably the 

Westwind Drift controlling temperatures in the montane regions, and local to regional rainfall sourced 

by migrating moisture from the Eastern Mediterranean Sea. Other factors may have influenced climate 

conditions over the Aral Sea Basin, such as variable solar activity, as suggested by Crowley (2000) 

based on climate-modelled simulations over the Northern Hemisphere. Testing this proposal would 

require higher-resolution analyses than presently undertaken. However, the degree of lake-level 

lowering may have been amplified by humans responding to changing environmental conditions. 

Irrigation systems were probably extended during periods of more arid conditions. Documentary 

evidence shows the existence of irrigation activities already during Early Classical Antiquity (before 0 

BC) (Boroffka et al., 2005), indicating that lake water levels strongly depended on climate conditions 

at that time too. As to changes during the early to middle Holocene, ongoing research aims to unravel 

the respective impacts of climate and tectonics on the hydrology of the Aral Sea ecosystem.  
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Abstract  

High-resolution pollen analyses (~50 years) from sediment cores retrieved at Chernyshov Bay in 

the NW Large Aral Sea record shifts in vegetational development from subdesertic to steppe 

vegetation in the Aral Sea Basin during the late Holocene. Using pollen data to quantify climatic 

parameters, we reconstruct and date for the first time significant changes in moisture conditions in 

Central Asia during the past 2000 years. Cold and arid conditions prevailed between ca. 0 and 400, 

900 and 1150, 1500 and 1650 yr AD with the extension of xeric vegetation dominated by steppe 

elements. These intervals are characterized by low winter and summer mean temperatures and low 

mean annual precipitation (Pmm <250 mm/yr). Conversely, the most suitable climate conditions 

occurred between ca. 400 and 900, 1150 and 1450 yr AD, where steppe vegetation was enriched by 

plants requiring moister conditions (Pmm ~250–500 mm/yr) and some trees developed. Our results are 

fairly consistent with other late Holocene records from the Eastern Mediterranean region and the 

Middle East. It is showed that regional rainfall in Central Asia is predominantly controlled by the 

Eastern Mediterranean cyclonic system when the North Atlantic Oscillation (NAO) is in a negative 

phase. 

 

Keywords: Pollen analysis; Vegetation; Climate; Aral Sea; Late Holocene; Central Asia, negative 

NAO. 
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IV.1. Introduction 

 

Numerous biostratigraphic, geomorphological and archaeological proxy data document that 

climate of Central Asian deserts and semi-deserts experienced many changes at various time scales 

through the Late Pleistocene and Holocene (e.g. Velichko, 1989; Tarasov et al., 1998a; Boomer et al., 

2000; Boroffka et al., 2005; Boroffka et al., in press). Climatic variations resulted in multiple shifts 

from hyper-arid to semi-arid deserts and even steppe vegetations with development of shrubs 

(Kremenetski and Tarasov, 1997; Kremenetski et al., 1997; Tarasov, 1992; Tarasov et al., 1997, 

1998a). However, whereas environmental and climate changes are well-documented in southwestern 

Siberia and Kazakhstan during the Pleistocene and early Holocene (Kremenetski and Tarasov, 1997; 

Kremenetski et al., 1997; Tarasov et al., 1997), they are still scarse for the Aral Sea Basin (e.g. 

Rubanov et al, 1987; Boomer et al., 2000). Using pollen and tree macrofossil records, Tarasov et al. 

(1998a) reconstructed vegetation biomes at 6000 yr BP, and documented dry conditions similar to 

present-day ones around the Aral Sea. Distinct vegetation changes occurred in northeastern 

Kazakhstan (Kremenetski and Tarasov, 1997). From two peatlands and two lakes sections, they 

document a milder climate between 6000 and 4500 yr BP, followed by drier and more continental 

conditions during 4500–3600 yr BP, and a “less continental” climate during 3300–2800/2700 yr BP. 

Recently, Esper et al. (2002) published a high-resolution climate record from the Karakorum and Tien-

Shan Mountains based on tree-ring width, documenting prominent temperature changes for the last 

1200 years. They reported warm conditions during 800–1000 yr AD, 1300–1450 yr AD and during the 

past century. In contrast, lowered temperatures were inferred during 1000–1200 yr AD and during the 

“Little Ice Age” (1450–1900 yr AD). 

In the Aral Sea area, high-resolution climatic studies have been recently undertaken in the frame 

of the project CLIMAN (Nourgaliev et al., 2003; Sorrel et al., 2006). In this study, we present a new 

pollen record covering the last 2000 years with a time resolution of ca. 50 years. Based on quantitative 

pollen analyses, we provide evidence for significant changes in moisture conditions and vegetation 

patterns in the Aral Sea Basin. We use pollen data to reconstruct past temperature and mean annual 

precipitation during the past 2000 years. Our objective is to identify climatically induced shifts in the 

terrestrial vegetation surrounding the lake and to compare them to other records from the Middle East 

and Central Asia. These data are then critically evaluated in order to provide initial assessment of late 

Holocene climatic changes in Central Asia. 

 

Geological and climatic frame of the Aral Sea Basin 

The Aral Sea, situated in Central Asia (Fig. 4.1), represents an ideal sedimentary archive for 

studying environmental and climate changes in the past. The present-day climate is marked by extreme 

continental conditions that are mediated by a complex topography around the Aral Sea. 
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Figure 4.1: Location map of the Aral Sea and the study area (modified from Lioubimtseva et al., 2005). 

The Central Asian arid region (= Aral Sea Basin) comprises the Turan Lowland and the Kyzyl 

Kum, and is surrounded in the North by the southern margin of the Kazakh Hills (at ca. 48°N), the 

Middle Asian Mountains on its southern and southeastern edges (Pamir, Tien Shan), and the lower 

mountains of the Kopet Dagh (2000 m in altitude) in the SouthWest (Fig. 4.1). In the North, the Turan 

Lowland descends progressively northward and westward and opens towards the Caspian lowland 

(Lioubimtseva et al., 2005). In the Aral Sea Basin, ecosystems mostly represented by steppes 

(including shrubs) are the prevailing landscapes. Some isolated trees (poplar, tamarisk, elm, oak, etc.), 

which are typical for riparian ecosystems, are restricted to the banks of two major Central Asian rivers, 

the Syr Darya and the Amu Darya. Winters, dominated by the Siberian High Pressure Cell (Zavialov, 

2005) are cold and dry. Severe frosts, with mean temperatures of -26°C and absolute minimum of -

40°C are common (Lioubimtseva et al., 2005). In contrast, summers are hot, cloudless and dry. In 
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autumn, a rapid cooling of the land tends to stabilize the atmosphere, protracting the dry season. 

Therefore, rain is rare in the basin with maximum precipitation in winter and early spring 

(Lioubimtseva, 2002; Nezlin et al., 2005), whereas almost no rain occurs between May and October 

(e.g. Létolle and Mainguet, 1993; Zavialov, 2005). Overall, the characteristic number of rainy days is 

30–45 per year (Bortnik and Chistyaeva, 1990), and precipitation over the Aral Sea tends to increase 

northwards (Zavialov, 2005). 

 
IV.2. Material and methods 

 

IV.2.1. Site, sediments and chronology 
 

During a field campaign in the summer 2002, Piston cores CH1 (11.04 m) and CH2 (6.0 m) 

(45°58'528’’ N, 59°14’459’’ E; water depth 22 m) were retrieved with a Usinger piston corer 

(http://www.uvitec.ut) about one km off the shoreline at Chernyshov Bay (Fig. 4.1). We investigated 

the composite sediment core CH2/1 (Cores CH1 and CH2), whose total length is 10.79 m. The 

correlation between Cores CH1 and CH2 was performed by matching laminations, using photographs, 

physical properties and XRF scanning data (see Fig. 2.3). Detailed lithological description of section 

CH2/1 is given in Sorrel et al. (2006). A simplified lithological profile and the age model for section 

CH2/1 are presented in Figure 4.2. 
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Figure 4.2: Simplified lithological profile and age model for section CH2/1 based on AMS 14C 
dating on the green alga Vaucheria sp. (full dots). Open dot: peak in 137 Cs [1963–1964 AD]. 

http://climan.gfz-potsdam.de/
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In section CH2/1, reliable dating for the upper 5 m was obtained by correlation with the magnetic 

susceptibility record from parallel cores 7, 8 and 9 retrieved ca. 50 m apart from the studied cores 

(Nourgaliev et al., 2003). This correlation provides an age of 480±120 yr BP (cal. years) at 1.4 m 

depth and 655±65 yr BP at 4.48 m in section CH2/1 (Table 2). For the lower part of section CH2/1 [5–

10.79 m], AMS radiocarbon ages were determined using the green alga Vaucheria sp. and CaCO3 

from mollusc shells, which were successively picked from the washed sediment sample and carefully 

cleaned from adhering particles. Algae were stored in distilled water within a glass vessel. For each 

sample, AMS 14C dating was performed using between 0.2 and 1.0 mg of pure extracted carbon. 

Extrapolation of sedimentation rates below 8.3 m provides an age of ca. 2000 yr BP for the basement 

of section CH2/1. A sampling interval of 30 to 40 cm was selected, which provides a time resolution 

of ca. 50 years. The top of the core (uppermost 40 cm) has been dated as post-1963, as based on a peak 

in 137Cs at 0.46 m reflecting the bomb period (ca. 1963–1964 AD) (Heim, 2005). Accordingly, dating 

on Vaucheria sp. at 0.55 m reveals an age of 101.9 ± 0.3 pMC (post-1950). 

 

 

 

 

 

 

 

 

Table 2: Radiocarbon dates for section CH2/1. AMS 14C ages were measured at Poznań Radiocarbon 
Laboratory (Poland). Radiocarbon ages were then corrected to calibrated (cal) ages using the IntCal04 
calibration curve (Reimer et al., 2004). They indicate values with 2 standard deviations (95% of 
confidence). 

IV.2.2. Sample processing 
 

Pollen slide preparation followed the Cour’s method (Cour, 1974). 35 sediment samples (15–25 g 

dry weight) were treated with cold HCl (35%) and cold HF (70%) to remove carbonates and silicates. 

Denser particles were separated from the organic residue using ZnCl2 (density = 2.0). Residues were 

filtered through a 150-µm nylon sieve to eliminate the coarser particles including organic 

macroremains. Palynomorphs were further concentrated using a 10-µm nylon sieve after a brief 

sonication (about 30 s). The final residue was then homogenized, and mounted onto microscope slides 

with glycerol. A transmitting light microscop using ×400 and ×1000 magnifications was used for 

pollen identification. Pollen identification was performed using the pollen photograph bank and 

several atlases of the ‘Laboratoire PaléoEnvironnements et PaléobioSphère’ (Lyon) as well as its 

pollen database “Photopal” (http://medias.obs-mip.fr/photopal). Pollen grains are very well-preserved 

in late Holocene sediments from section CH2/1 and abundant in all samples. Pollen concentration was 

estimated using the Cour’s method (Cour, 1974). Concentration in palynomorphs varies from <500 to 

>45,000 grains/g. Pollen zones were assessed using a canonical correspondence analysis performed on 

selected taxa representing variables. Pollen enumeration was conducted at the Laboratory 
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‘PaléoEnvironnements et PaléobioSphère’ and data are stored in the C.P.C. database 

(http://cpc.mediasfrance.org). 

 
IV.2.3. Taxonomy and ecological grouping of pollen grains 

 

Since pollen grains found in modern sediments transported either by air or by rivers reflect the 

local to regional vegetation, we used the botanical determination of pollens grains to reconstruct 

palaeovegetation in the Aral Sea Basin. A minimum of 100 pollen grains, excluding Amaranthaceae-

Chenopodiaceae and Artemisia, which are usually over-represented in arid environments, and non-

determinable (i.e. poorly preserved) pollen grains were counted in each sample. Generally more than 

25 different taxa were found in each sample. 79 taxa have been identified whereas 17,356 pollen 

grains were enumerated. Two different diagrams have been assessed. 

(A) A simplified detailed pollen diagram (Fig. 4.3) displays percentages of the most frequent 

taxa, which were calculated relative to the total pollen sum. Taxa are represented according to the 

following ecological groups (trees + shrubs; herbs): (1) mega-mesothermic (= subtropical) elements: 

Engelhardia, Myrica, Taxodiaceae (including Taxodium-type), plus Nyssa, Mappianthus, 

Euphorbiaceae (i.e. the other mega-mesothermic elements); (2) mesothermic (warm-temperate) 

elements: Quercus, Alnus, Liquidambar, Juglans, Ulmus, Carpinus, Populus, Betula, Corylus, plus 

Buxus sempervirens type, Vitis, Juglans cf. cathayensis, Zelkova, Tilia, Taxus, Salix, Fagus, Platanus, 

Fraxinus, Acer, Carya, Pterocarya, Eucommia ulmoides (i.e. the other mesothermic elements); (3) 

meso-microthermic (mid-altitude) elements: Tsuga, Cathaya; (4) microthermic (high-altitude) arboreal 

elements: Abies; (5) the other Pinaceae (mostly composed of Pinus); (6) sclerophyllous elements: 

Cupressaceae, evergreen Quercus; (7) aquatic plants: Sparganium + Typha, Potamogeton, plus 

Myriophyllum, Aristolochia, Alisma, Nymphea (i.e. the other aquatic plants); (8) non-significant 

elements (because being cosmopolitan plants): Rosaceae, Ranunculaceae; (9) herbs: Amaranthaceae-

Chenopodiaceae, Asteraceae Asteroidae, Poaceae, Rumex, Polygonum, Caryophyllaceae, Phlomis, 

Cyperaceae, plus Asteraceae Cichorioidae type, Polygonum, Gallium, Cannabaceae, Fabaceae, 

Plumbaginaceae, Urtica, Zygophyllaceae, Brassicaceae, Helianthemum, Geraniaceae, Sambucus, 

Papaveraceae, Plantago, Apiaceae, Ericaceae, Liliaceae, Narcissus, including some subdesertic 

elements such as Calligonum, Nitraria, Ziziphus spina-christi (i.e. the other herbs); (10) steppe 

elements: Artemisia and Ephedra. 

(B) In order to simplify the pollen record, a composite diagram is presented in Figure 4.4, where 

the relative percentages of the ten relevant ecological groups are presented. 
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IV.2.4. Climate reconstruction 
 

For the quantification of palaeoclimate signals recorded in plant assemblages, the “probability 

mutual climatic spheres” (PCS) method described in detail by Klotz and Pross (1999) and Klotz et al. 

(2003, 2004) was favoured over modern analogue methods (e.g., Guiot, 1987, 1990; Prentice et al., 

1992, 1996; Peyron et al., 1998; Tarasov et al., 1998a, b; Klotz, 1999). Generally, modern analogue 

methods (MAM) are based primarily on comparing past pollen spectra with present-day analogues. In 

this study, the main restriction in applying this technique is the general poorness of the underlying 

available database of surface pollen spectra from the Aral Sea region (only 91 in Kazakhstan, Tarasov 

et al., 1998a) which may serve as modern analogues for reliable climate reconstructions. Besides, the 

usefulness of these methods is restricted when no present-day analogues exist for past pollen floras, as 

it is the case for the association Amaranthaceae–Artemisia–Taxodium found in this record. In addition, 

climate reconstructions with modern analogue methods may be significantly influenced by 

taphonomic effects when applied for instance on records from areas such as the Aral Sea Basin, which 

experiences numerous dust storms throughout the year (Seredkina, 1960; Létolle and Mainguet, 1993; 

Zavialov, 2005). Hence, the use of the PCS method is clearly more suitable than MAM for 

reconstructing climatic change in this study.  

The PCS method is independent from relative proportions of plants, considering only their 

presence (at a minimum level of 0.5% abundance). Generally, “mutual climatic range” methods 

determine the climatic tolerance of past taxa by means of mutual present-day ranges of the climatic 

tolerances of the nearest living relatives (NLR) of the taxa represented in the past assemblages. The 

principle of the method was firstly applied on beetles to reconstruct palaeoclimate conditions during 

the last glacial period and the Holocene (e.g., Coope, 1977; Atkinson et al., 1986; 1987; Elias, 2000), 

and has subsequently been used for the climatic interpretation of Holocene plant taxa (Kershaw & Nix, 

1988). It has been recognized a considerable advantage of this reconstruction method to be 

independent from the availability of modern analogues and from taphonomic influences (Mosbrugger 

and Utescher, 1997). Especially, the PCS method (Klotz et al., 2003; 2004) calculates probability 

intervals within the mutual climatic spheres by the use of a multitude of present-day floras. The 2-

dimensional spheres representing the present-day climate requirements of the NLR are derived from 

the correlation between present-day climate data on a 0.5°×0.5° latitude/longitude grid (New et al., 

1999) with potential distribution maps of more than 205 present-day plants occurring in Europe and 

adjacent Asia (Meusel and Jäger, 1992; Walter and Straka, 1970). Within the mutual 2-dimensional 

climatic sphere of a past flora, probability intervals are calculated for the individual climate 

parameters. For explanation, we refer to the mean annual temperatures (MAT) as an example. The 

range of MAT defined by the mutual climatic sphere of the past flora is compared to MAT ranges 

calculated for 9555 synthetically generated floras (Klotz, 1999; Klotz and Pross, 1999; Pross et al., 

2000) composed exactly of those of the 205 plants at a given geographical co-ordinate whose potential 
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distribution areas covers that location. We then select synthetic floras which show a MAT range 

similar to the range of the past flora. It can be observed that the distribution of actual MAT values is 

restricted to a smaller interval when compared to the reconstructed mutual ranges of the selected 

synthetic floras. This interval of preference is then interpreted as the probability interval of MAT, from 

which we only used the upper and lower limits for graphical presentation. The quality of PCS has been 

tested on the basis of a multitude of present-day floras (Klotz et al., 2003; 2004) documenting the 

large agreement between reconstructed and actual grid climate values, with correlation coefficients 

and mean average error of 0.95 and 1.1°C for summer temperatures, 0.95 and 1.7°C for winter 

temperatures, 0.95 and 1.1°C for mean annual temperature and 0.86 and 100 mm for mean annual 

precipitation. Therefore, the PCS is considered to represent a very sensitive method for the 

interpretation of climate variability. 

 
IV.3. Results 

 

Five ecostratigraphic pollen zones have been distinguished based on major changes in pollen 

assemblages, labelled as P1 to P5 (Figs. 4.3 and 4.4). 

 

Pollen zone P1 (10.75–9.97 m; ca. 0 – 400 yr AD) 

This zone is characterized by a large supremacy of herbs (45–47.6%), mainly represented by 

Amaranthaceae-Chenopodiaceae (35–40%), and steppe elements (43–47%) with frequencies of 

Artemisia fluctuating between 42.7 and 46.8%. Among other herbaceous plants (Caryophyllaceae, 

Asteraceae Asteroidae, Rumex, Cyperaceae), Poaceae appear abundant with values increasing towards 

the top (2.5–5.8%). Conversely, arboreal taxa are extremely rare (mega-mesothermic elements: <2%, 

mesothermic elements: <5%), respectively mostly represented by Taxodiaceae (1.2% at 9.97 m), 

Betula (1.2% at 9.97 m) and few Alnus (<1%). Pollen grains of Quercus, Carpinus, Populus, Corylus 

and Cupressaceae are also present at low percentages, with values never exceeding 1%. Pinus is found 

at low abundances (<5%), as pollen of Rosaceae and aquatic plants (>1%). Total pollen concentration 

is relatively high in the lowermost part of this zone (16,600 grains/g at 10.75 m) but decrease upwards 

(<4,000 grains/g at 9.97 m) (Fig. 4.4). 

 

Pollen zone P2 (9.97–6.13 m; ca. 400 – 900 yr AD) 

It shows a conspicuous increase in percentages of arboreal taxa characterized by higher 

abundances of mega-mesothermic (Taxodiaceae: 13.3% at 7.33 m) and mesothermic (6.8% at 7.33 m) 

elements. Among other warm-temperate trees, Betula, Alnus and Corylus are most abundant (Figs. 4.3 

& 4.4). Frequency of Cupressaceae also slightly increases (1.7% at 7.33 m), while values of Pinus 

become more important (mean: 6.2%; 11.7% at 6.53 m). This zone is also characterized by a drastic 

decrease in percentages of Amaranthaceae-Chenopodiaceae (9%–21%), and numbers of Poaceae also 
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slightly decrease. Relative abundances of Artemisia (steppe) remain stable at relative high levels, even 

showing higher values than in zone P1 (47%–65%). 
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Figure 4.3: Pollen simplified detailed diagramm for section CH2/1. Black-filled lines indicate 
percentage abundance and white-filled lines give ×10 exaggeration (i.e. per mill abundance). Pollen 
zones P1 to P5 are based on the present study. Lithology, see Fig. 2.
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Non-significant pollen grains are also present in low values (<1.5%) and abundance of aquatic plants 

slightly increases (0.6%–3%). Total pollen concentration is lower in this zone and fluctuates between 

2,000 and 10,500 grains/g (Fig. 4.4). 

 

Pollen zone P3 (6.13–4.92 m; ca. 900 – 1150 yr AD) 

This zone is characterized by a general decrease in mega-mesothermic and mesothermic elements, 

with respective values of 2.8%–9% and 1.5%–3.4% (Fig. 4.4). Particularly, abundance of Taxodiaceae 

(mean: 3.1%) and Taxodium-type (0%–1.6%) shows pronounced lower values compared to the 

previous zone. Among the mesothermic elements, Alnus, Betula and to a lesser extent Quercus and 

Carpinus are the most represented taxa, with values rarely exceeding 1%. Though frequencies of herbs 

(Amaranthaceae-Chenopodiaceae, Asteraceae Asteroidae, Rumex, Phlomis, Cyperaceae) remain stable 

compared to in zone P2 (19.5%–32%) with a slight decrease in Poaceae (1.5%–3.6%), abundance of 

steppe elements conspicuously increases, through elevated frequency of Artemisia (56%–72%). 

Percentages of Cupressaceae, non-significant elements and aquatic plants are again relatively low 

(<2%), while Pinus frequency clearly decreases (mean: 2.7%). Total pollen concentration increases 

towards the top of this zone, with a maximum value of 40,000 grains/g at 5.1 m (Fig. 4.4). 

 

Pollen zone P4 (4.92–2.02 m; ca. 1150 – 1450 yr AD) 

Following the increase in steppe elements in zone P3, this zone emphasizes a pronounced increase 

in percentages of trees and notably of mega-mesothermic elements with a maximum of 28.3% at 3.58 

m (Figs. 4.3 & 4.4). Noticeably relative abundances of Taxodiaceae fluctuate between 5% in the 

lowermost part of the zone (4.8 m) up to 21.7% at 3.85 m, while maximal values of Taxodium-type 

(12.23%) are recorded at 3.58 m. Pollen of Engelhardia and Myrica is also found but in low numbers 

(<1%), while rare specimens of Nyssa and Mappianthus have been recorded too. Mesothermic 

elements are common (3.5%–9.8%) and mostly represented, among other warm-temperate taxa, by 

Carpinus (3.7% at 3.18 m), Alnus (2.35% at 3.58 m), Quercus (1.4% at 3.18 m), Betula (1.15% at 3.85 

m) and Corylus (1.5% at 3.85 m). Populus (≤1%) and higher frequency of Liquidambar (<1%) also 

occurred in this zone. Pinus becomes more abundant upwards, with a maximum of 24.3% at 2.42 m, 

while few pollen grains of Tsuga and Abies have been found as well. Though frequency of Poaceae 

noticeably increases (6.5% at 4.59 m; 6% at 3.18 m; 5.6% at 2.82 m) as do values of Cyperaceae 

(0.2%–2.8%), percentages of Artemisia conspicuously drop with a minimum of 28.3% at 3.58 m, and 

values fluctuating around 40% throughout the zone. Abundances of Amaranthaceae-Chenopodiaceae 

are relatively similar as in zones P2 and P3 (14.8–32%). Aquatic plants increase noticeably (4.7% at 

3.58 m), as do Cupressaceae (1.9% at 4.59 m). Total pollen concentration decreases in this zone from 

45,000 grains/g at 4.59 m to less than 500 grains/g at 2.42 m (Fig. 4.4). 
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Figure 4.4: Pollen synthetic diagram for section CH2/1. Grouping was performed regarding the 
ecology of the plants (see text for explanation). Concentrations (per gram of dry sediment) are relative 
to the total pollen sum. Each sample represents a 30 to 40 cm interval and is plotted by its mean depth 
(see text for details). The ratio Amaranthaceae-Chenopodiaceae / Poaceae is regarded as 
representing a semi-quantitative index of aridity. Lithology, see Fig. 2.

 

Pollen zone P5 (2.02–0.00 m; ca. 1450 – 1980 yr AD) 

It is characterized by the transition to present-day vegetation types, with an abrupt decrease in 

percentages of mega-mesothermic elements (5.15%–10.6%) and to a lesser extent of warm temperate 

trees (1%–4.8%) correlatively with an increase in herbs (23.8%–33.6%) and steppe (45% to ca. 52% at 

the top) frequency (Figs. 4.3 & 4.4). Mega-mesothermic elements are mainly represented by 
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Taxodiaceae (including Taxodium-type) that nonetheless never exceed 10%, while other taxa from this 

group become scarce. Among the mesothermic elements, only abundance of Betula regularly exceeds 

1%, when Quercus, Alnus, Liquidambar, Populus and Corylus mostly run below 1%. Percentages of 

Cupressaceae slightly decrease (0.2–1.1%), as does Pinus from 10.8% at 1.66 m to 3% at the top. 

Tsuga, Abies and non-significant elements still occur, but at very low numbers (<1%). Although 

Amaranthaceae-Chenopodiaceae yield a pronounced increase in this zone (16.7%–27.7%), the 

frequency of Poaceae conversely decreases (2%–5.3%). Total pollen concentration is relatively low in 

this zone (<500–5,550 grains/g) (Fig. 4.4). 

 
IV.4. Vegetation patterns derived from the pollen record 

 

Herbs, predominant in all samples (Fig. 4.4), are characterized by an overwhelming presence of 

Artemisia that accounts for 28%–72% of the pollen sum, and pollen of Amaranthaceae-

Chenopodiaceae (20–25%). Poaceae (mean: 3.5%) is also common. Studies of pollen composition in 

aerosols indicate that both Artemisia and Amaranthaceae-Chenopodiaceae are high pollen producers 

(Van Campo et al., 1996; Cour et al., 1999), whereas Poaceae are rare in arid regions (Cour and Duzer, 

1978; Van Campo et al., 1996). At present in Central Asia, Artemisia and Amaranthaceae-

Chenopodiaceae are characteristic elements of steppe, semi-desert and desert environments (Tarasov 

et al., 1998a, 1998b). Since Amaranthaceae-Chenopodiaceae are commonly present under saline and 

desert conditions but can be easily replaced, even during periods of minor elevation in precipitation, a 

slight increase in abundance can be interpreted as an increase in salinity and/or aridification (El 

Moslimany, 1990). 

Pollen data suggest that open vegetation types with typical steppe elements (shrubs, herbs) were 

always predominant in the Aral Sea Basin during the last 2000 years. This implies that xeric 

conditions prevailed in the region, interrupted by periods of slightly enhanced moisture as reflected by 

slightly increased values of Poaceae. Based on the above ecological significance of Amaranthaceae-

Chenopodiaceae (indicative of dry conditions) and Poaceae which abundance generally increases with 

rain, we use the ratio Amaranthaceae-Chenopodiaceae / Poaceae as a semi-quantitative index of aridity 

(Fig. 4.4). In this diagram, high values of the ratio (>10) are considered indicative of arid conditions 

that favour semi-desert–steppe vegetation, whereas low values (<10) reflect periods of slightly 

elevated moisture conditions and the development of few trees in a less arid steppe. This is concurrent 

with abundance of aquatic plants and Cyperaceae which reflect some extension in aquatic environment 

(Fig. 4.3). Therefore, correspondence between low ratio values, sedimentological data and changes in 

lake water levels (Sorrel et al., 2006) validate the use of the ratio as a proxy for relative moisture 

availability in the Aral Sea Basin. 

Halophytes (Amaranthaceae-Chenopodiaceae, Ephedra, partly Artemisia) probably contribute to 

the predominant vegetation along the Aral Sea shoreline. However, the presence of aquatic plants is 
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also common in the pollen flora. In general, frequency of aquatic plants is almost parallel to that of 

Poaceae (Fig. 4.3). Increasing frequency of these taxa may be thus representative of some extension of 

local marshes accompanied by some development of herbs requiring less dry conditions, reflecting a 

slight increase in humidity. 

Trees are a minor component of the pollen flora, averaging 20% on the whole downcore, with 

however a maximum value of 28% in zone P4. Each arboreal group is indicative of specific 

environmental conditions, permitting to trace the probable origin of each taxon according to its 

ecology and present-day distribution. Probably, Pinus was not an eminent component of the regional 

vegetation; its frequency, even being modest, may be caused by its prolific production and 

overabundance in air- and water-transport. Warm-temperate elements (2%–10%), also common in the 

pollen record, comprise some elements today restricted to the Middle East, such as Liquidambar and 

Pterocarya. The presence of these mesothermic elements may reflect the past development of some 

riparian vegetation in the Aral Sea Basin. More surprisingly, in a region where so dry climate 

conditions predominated judging from the overwhelming dominance of herbs in the pollen record, 

some mega-mesothermic elements indicative of relatively warmer and wetter environments have been 

found in every sample analysed. These elements are mostly represented by Taxodiaceae (including the 

Taxodium-type pollen, a swamp element) and to a lesser extent by Engelhardia and Myrica. 

Considering the regional near sub-arid conditions in the basin during the last 2000 years, the presence 

of these relictuous elements in the Aral Sea sediments would require comment. Similarly, the presence 

of Cathaya (a past conifer restricted today in a few mid-altitude environments of the southwestern 

subtropical China) among the mid-altitude elements would be unexpected in such conditions. 

Because the Aral Sea is surrounded by older deposits mostly of Paleogene and Neogene age, we 

might expect increased reworking of older material from shore during periods of sheet-wash erosion, 

as it is the case for dinoflagellate cysts (see Fig. 4.6). However, from several samples of Miocene 

marls collected nearby the Chernyshov Bay, no pollen grain of Taxodium–type, Taxodiaceae, 

Cathaya, Engelhardia, Myrica was found. On the contrary, in section CH2/1, most of these pollen 

grains are found well-preserved, rarely broken or damaged, and exhibit all the criteria characteristic of 

fresh pollens. For further reliability, we carefully examined them under fluorescence light, a method 

which is currently used by palynologists to distinguish fresh from reworked specimens. Results 

showed that the pollen grains of Cathaya, Taxodium-type and other relictuous taxa display whitish to 

yellow tints that are usually characteristic of non-reworked pollen grains (Sorrel et al., in progress). 

Similar observations raised from tests conducted on Artemisia and pollen grains of Amaranthaceae-

Chenopodiaceae. Hence, the presence of mesothermic and mega-mesothermic relictuous taxa in 

sediments from Chernyshov Bay is probably linked with mid- to long-distance wind transport, 

respectively. The unquestionable relevance of these findings will be discussed in a forthcoming paper 

(Sorrel et al., in progress). Nevertheless, for this paper, since (1) the Taxodiaceae have not been 
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considered for the palaeoclimate reconstructions and (2) other arboreal taxa (Alnus, Ulmus) document 

the existence of a riparian association in the Aral Sea Basin, this discussion is not crucial at that stage. 

 
IV.5. Climate reconstruction 

 

The composite pollen diagram (Fig. 4.4) suggests that some limited but significant changes in the 

vegetation pattern occurred in the Aral Sea Basin during the last 2000 years. Changes in the pollen 

flora document switches between sub-desertic conditions (steppe almost constituted of Artemisia) and 

less dry environments (steppe enriched in Poaceae) coeval to the installation of some riparian trees. 

Since the expansion of open vegetation and the development of trees are controlled by climate 

conditions, we used the pollen data to reconstruct climate variability in terms of different temperature 

parameters and mean annual precipitation during the last 2000 years (Fig. 4.5). For the climate 

reconstruction, all taxa recorded in samples from section CH2/1 have been included with the exception 

of Taxodiaceae. Indeed, Taxodium is naturally found today only in very restricted regions of south-

eastern Asia, making the derived climatic sphere (e.g., coldest and warmest spheres of the species and 

their relationship) based on its geographical distribution very approximate. This is in contrast to the 

climate spheres of the other azonal vegetation elements used in the reconstruction whose present-day 

distributions are well known and which are, therefore, of higher resolution. 

Because the source of some pollen grains may be distant from the central depression of the basin, 

this quantitative reconstruction of climatic parameters gives a regional widespread picture of the 

changes in moisture conditions rather than a local signal restricted to the Aral Sea and its nearest 

adjacent areas. To further constrain our climatic reconstruction, we compared the reconstructed values 

to modern instrumental data from Central Asia along the latitudinal gradient [40°75’–50°25’], across 

the Aral Sea Basin (Fig. 4.5). 

 

Pollen zone P1 (10.75–9.97 m; ca. 0 – 400 yr AD): basal arid interval 

High values of the ratio Amaranthaceae-Chenopodiaceae/Poaceae concurrently with high 

frequency of steppe elements Artemisia and Amaranthaceae-Chenopodiaceae indicate that prevailing 

climate from ca. 0 to 400 yr AD was colder and more arid than today, with mean annual temperatures 

of 4°–6°C, temperatures for the coldest month averaging –6°C and mean annual precipitation never 

exceeding 300 mm/yr. The general feature of such climatic conditions is supported by 

sedimentological data and precipitation of gypsum interbedded with fine clays in the lowermost part of 

this zone. The transition between pollen zones P1 and P2 is characterized by a probably very short 

coring gap. 
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Figure 4.5: Reconstructed climate parameters: mean annual temperature (MAT in °C), mean 
temperature of the coldest month (MTC in °C), mean temperature for the warmest month (MTW in °C) 
and for mean annual precipitation (MAP in mm/yr) for section CH2/1 during the last 2000 years 
(lower diagram). Taxodiaceae and Taxodium-type have not been included for climate quantification 
(see text for detail). The upper figure represents instrumental data for present-day (i) different 
temperature parameters, and (ii) mean annual precipitation in Central Asia. Data have been plotted 
along the latitudinal gradient [40°75’–50°25’] (y). Data were extracted from New et al. (1999). 
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Pollen zone P2 (9.97–6.13 m; ca. 400 – 900 yr AD): increasing humidity 

Decreasing xeric conditions are inferred from low values of the ratio Amaranthaceae-

Chenopodiaceae/Poaceae (<10) between ca. 400 and 900 yr AD. Coevally, an increase in the 

abundance of warm-temperate elements and aquatic plants suggests that the climate became 

moderately wetter and potentially warmer. Reconstructed climate conditions indeed document that 

mean annual precipitation fluctuated between 270 and 475 mm/yr, whereas temperatures of the 

warmest month averaged 21°C (coldest month: -5°C) and mean annual temperatures 9°C. Increase in 
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moisture conditions are concurrent with the evidence of lake-level rise, inferred from dinoflagellate 

cyst assemblages (Sorrel et al., 2006), and may have favoured the expansion of some riparian trees. 

 

Pollen zone P3 (6.13–4.92 m; ca. 900 – 1150 yr AD): strong aridification 

This zone documents a return to strong arid conditions, as reflected by the progressive decrease in 

warm-temperate trees and the expansion of steppe elements Artemisia and Amaranthaceae-

Chenopodiaceae. This is concurrent with high values of the aridity index (>10) and declined rainfall 

(200–230 mm/yr). Climate reconstruction document lower temperatures during this interval (coldest 

month: -7°–-10°C; warmest month: 15°–21°C; mean annual temperature: 4°–6°C). Further evidence 

for a long-term aridification is provided by a gypsum layer at 4.86 m (Fig. 4.4). 

 

Pollen zone P4 (4.92–2.02 m; ca. 1150 – 1450 yr AD): increasing humidity 

Increasing moisture conditions are inferred from a drop in the abundance of both steppe herbs and 

shrubs coincident with higher percentages of Poaceae and trees. Based on the ratio Amaranthaceae-

Chenopodiaceae/Poaceae (<10), prevailing climate conditions were noticeably wetter than at present. 

This is concurrent with enhanced precipitation (370–505 mm/yr). Reconstructed temperatures for this 

interval were higher (mean annual: 7°–11°C; coldest month: -4°C). Increasing moisture conditions are 

consistent with rising lake levels and important freshwater discharges in the Aral Sea, as indicated in 

the dinoflagellate cyst assemblages (Sorrel et al., 2006). Higher-water availability between ca. 1150 

and 1450 yr AD probably favoured the expansion of trees onshore, with a possible development of a 

riparian association (Sorrel et al., in progress) comprising warm-temperate trees (Ulmus, Alnus, 

Populus, Corylus) and maybe few mega-mesothermic elements (Taxodium-type, Engelhardia). The 

last sample records the onset of more arid conditions resulting in lower precipitation rates (<200 

mm/yr). 

 

Pollen zone P5 (2.02–0.00 m; ca. 1450–1980 yr AD): brief aridification followed by present-day 

climate conditions 

A third arid interval is recorded during ca. 1450–1550 yr AD, as reflected by increasing 

abundance of steppe element Artemisia and slightly higher values of the ratio Amaranthaceae-

Chenopodiaceae/Poaceae. This short phase is characterized by low precipitation rates (200–270 

mm/yr) but more contrasting temperatures. Whereas both mean annual values (6°–9°C) and 

temperatures for the warmest month (18.9°–20.5°C) suggest warmer conditions in this interval, mean 

values for the coldest month decrease from -7°C around 1450 yr AD to -9°C at 1550 yr AD. This 

interpretation is confirmed by sedimentological data, with precipitation of gypsum crystals in clay 

sediments around 1500 AD. Reconstructed climatic parameters from the pollen content of surface 

sediments (1550–1980 yr AD) indicate contrasting precipitation rates (240–370 m/yr) and a slight 

warming trend (coldest month: -6°–-3°C; warmest month: 20°–22°C; mean annual temperature: 7°C). 
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Observations of present-day landscapes along the northern shore of the Aral Sea corroborate pollen 

evidence of enhanced aridity and higher temperatures in recent decades. The reconstructed climate 

parameters in the uppermost sample (i.e. 1980 AD) are in accordance with present-day instrumental 

data from Central Asia (Fig. 4.5), where mean annual temperature and precipitation respectively 

decrease / increase from 14°C / 110 mm at 40°75’N to 4°C / 310 mm at 50°25’N, validating the ranges 

of values obtained in our climate quantification. However, whether reconstructed temperature for the 

coldest month (-3°C) fairly overlaps instrumental values (-1°–-16°C), the estimated value for the 

warmest month (22°C) appears slightly lower than the instrumental ones (22°–30°C). An explanation 

for this could be the rapid warming trend observed during the past 20 years, which is not documented 

in our pollen record. 

 
IV.6. Discussion and conclusions 

 

Today, the climate in the deserts of Central Asia is mostly controlled by the shifts of the westerly 

cyclonic circulation and depends on the position of the Siberian High during winter and spring 

(Zavialov, 2005). In addition, local precipitation occurs during winter and early spring when 

depressions, developing over the Eastern Mediterranean, subsequently move along a northeast 

trajectory where they may even replenish moisture over the Caspian Sea (Aizen et al., 2001; Létolle 

and Mainguet, 1993; Lioubimtseva, 2002; Roberts and Wright, 1993). Therefore, we may expect 

elevated precipitation in Central Asia when moisture-transporting storms are stronger in the Eastern 

Mediterranean region and if so, we should find similar pattern of humidity between areas influenced 

by eastward moving storms (Israel, Turkey, Iran) and the Aral Sea Basin during the last 2000 years. 

Detailed palaeoclimatological studies based on δ18O measurements from carbonate deposits of the 

Soreq Cave (Israel) (Schilman et al., 2002) provide a reliable record for comparison with the pollen-

derived climate reconstruction presented here (Fig. 4.6). In addition, we present the relative abundance 

of reworked dinoflagellate cysts (Sorrel et al., 2006), which is expected to increase during periods of 

elevated sheet-wash from shore caused by enhanced rainfall. 

When a cold and arid period (mean annual rainfall <300 mm) has been inferred from the pollen 

flora during 0–400 yr AD, Schilman et al. (2002) document declining rainfall leading to dry events in 

Israel around 0 yr AD. A similar phenomenon was reported in Syria, with reduced winter / spring rains 

(Bryson, 1996). Coevally, a decrease in lake level is reported from Lake Van in Turkey, evidencing a 

period of decreasing humidity between ca. -1500 and 0 yr AD (Landmann et al., 1996, Lemcke and 

Sturm, 1996). The decrease of rainfall is possibly related to a change in the mode of the North Atlantic 

Oscillation (NAO) that reduced cyclonic activity over the Eastern Mediterranean, being high during a 

negative NAO mode (Hurrell, 1995; Hurrell et al., 2003). This is in accordance with Aizen et al. 

(2001) who found that the NAO has a statistically significant inverse relationship with moisture 

availability over mid-latitudes of continental Asia. Based on correlation analyses between atmospheric 
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circulation patterns and regional precipitation, they reported that a negative (positive) difference in 

anomalies of sea-level pressure between the Azores and the Iceland is favourable (unfavourable) for 

precipitation development over the middle plains of Asia. 
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igure 4.6: Comparison between reconstructed climate parameters (temperature, 
precipitation) from section CH2/1, the δ18O record from carbonate deposits in the Soreq Cave 
Israel, Schilman et al., 2002) and the sheet-wash index derived from the relative abundance of 
eworked dinoflagellates cysts at Chernyshov Bay (Sorrel et al., 2006). Grey shadings 

represent periods with increased temperature and rainfall in the Aral Sea Basin when 
oisture-transporting storms are stronger from the Mediterranean Sea. 

 

Following this aridification, the time-interval ca. 400–900 yr AD is characterized by some warmer 

and wetter climate conditions in the Aral Sea Basin, which favoured the development of some arboreal 

vegetation in the less dry edaphic areas. This is supported by a conspicuous decrease in the δ18O of 

carbonate deposits from the Soreq Cave (Schilman et al., 2002; Fig. 4.6), which infers elevated 

precipitation rates in Israel during 400–900 yr AD linked to stronger storms over the Eastern 

Mediterranean. Other evidences document a period of maximum precipitation around 700 yr AD, as 

inferred from land records including tree assemblages (Lipschitz et al., 1981), high-stand levels of the 

Dead Sea (Frumkin et al., 1991) and carbonate cave deposits in Israel (Bar-Matthews et al., 1998). The 
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period 900–1150 yr AD is characterized by a return to colder and more arid conditions in the Aral Sea 

Basin concurrently with declining rainfall (<270 mm/yr) and low mean annual temperatures, 

suggesting hence lowered moisture derived from the Eastern Mediterranean in winter and early spring 

during a possible positive phase of the NAO. This is in accordance with other palaeoenvironmental 

records from the Eastern Mediterranean which document colder conditions and reduced precipitation 

between 850 and 1200 yr AD (Issar et al., 1991; Schilman et al., 2002). After 1150 yr AD, elevated 

moisture conditions during a warmer period are inferred, with precipitation rates frequently beyond 

400 mm/yr and enhanced sheet-wash from shore as reflected by higher abundance of reworked 

dinoflagellate cysts. A similar pattern is inferred from lowered δ18O values in speleothems from the 

Soreq Cave between 1200 and 1500 yr AD (Fig. 4.6), suggesting higher rainfall over the Eastern 

Mediterranean region during the Medieval Warm Period. This event also corresponds to high-stand 

levels of the Dead Sea (Issar et al., 1991) and the Sea of Galilee (Frumkin et al., 1991). 

A brief aridification occurred again during 1450–1550 yr AD. This short-term change towards 

colder/drier conditions probably coincide with the Little Ice Age which signature has been previously 

recorded in δ18O values from the foraminiferan G. ruber in the Eastern Mediterranean Sea (Schilman 

et al., 2001) and in carbonate deposits from Israel (Bar-Matthews et al., 1998; Schilman et al., 2002). 

From 1550 yr AD upwards, increased temperatures document a progressive warming. For the last 

2000 years, no human activity exerting control on vegetation change has been detected from the pollen 

record of Chernyshov Bay. 

 

Despite a time-resolution of ca. 50 years, the climate reconstruction provides compelling evidence 

that centennial scale events are recorded for the last 2000 years (Fig. 4.6). In the Aral Sea Basin, 

climate conditions may fluctuate with a periodicity of ~400 year, with intervals of relatively elevated 

moisture conditions alternating with more arid phases. Since our data match fairly well with the Soreq 

cave record from Israel (Schilman et al., 2002), we thus conclude that the precipitation pattern in the 

Aral Sea Basin is directly linked to atmospheric changes in the Eastern Mediterranean region 

modulating moisture distribution towards the Middle East and Western Central Asia. This link may 

document a teleconnection to the NAO during negative phases. Modelling of Holocene climatic 

scenarios would improve our understanding of atmosphere–biosphere interactions in this vast arid 

region, and identify important thresholds between climate changes and landscape responses. 
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Abstract 

Changing content of detrital input in laminated sediments traced by XRF scanning and microfacies 

analyses (1 cm-resolution) document prominent changes in wind strength and frequency in Western 

Central Asia. A core retrieved from the NW Large Aral Sea allows a continuous reconstruction of 

wind dynamics in western Central Asia for the past 1500 years. During 450–700 AD, 1210–1265 AD, 

1350–1750 AD and 1800–1975 AD detrital inputs (Titanium) are high, documenting an enhanced 

spring atmospheric circulation associated with an increase in intensity of the Siberian High pressure 

system over Central Asia. In contrast, lower Titanium content during 1750–1800 AD and 1980–1985 

AD reflect a diminished influence of the Siberian High during springs with a reduced atmospheric 

circulation, whereas a moderate spring circulation characterizes the time period 700–1150 AD. 

Unprecedented weakened atmospheric circulation over Western Central Asia are inferred during ca. 

1180–1210 AD and 1265–1310 AD, with a considerable decrease in dust storm frequency, 

sedimentation rates, lamination thickness and detrital inputs (screened at 40 µm-resolution). Our 

results are fairly consistent with changes in the intensity of the Siberian High during the past 1400 

years as reported in the GISP2 Ice Core from Greenland. 

  

Keywords: Chemical composition; laminated sediments; wind dynamics; Siberian High; Aral Sea; 

late Holocene. 
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V.1. Introduction 
 

Despite a growing understanding of the regional impacts of global climate change during the last 

few thousand years (Bond et al., 2001; Bradley, 2000, 2003; Briffa, 2000; Cook et al., 2004; Crowley, 

2000; Mann and Jones, 2003; Moberg, 2005), little attention has been granted to the Aral Sea basin. 

Since Western Central Asia is situated at a confluence where different climate dynamics control the 

hydrology and environmental conditions (Khan et al., 2004; Small et al., 2001; Sorrel et al., 2006), the 

Aral Sea is an important archive for studying possible feedbacks between relevant climate features and 

their driving forces. Today the moisture distribution is controlled by the North Atlantic Oscillation 

(NAO) when the system is in a negative phase (Aizen et al., 2001), whereas draughts are possibly 

controlled by ENSO as proposed by Barlow et al. (2002), Khan et al. (2004) and Nezlin et al. (2005). 

Precipitation, which essentially occur during winter and early spring in the deserts of Central Asia 

(Lioubimtseva et al., 2005; Nezlin et al., 2005), are associated with moisture originating from the 

Eastern Mediterranean and are migrating along a northeast trajectory to western Central Asia (Aizen et 

al., 2001; Lioubimtseva, 2002; Roberts and Wright, 1993; Sorrel et al., this issue). In late spring and 

summer, precipitation is significantly reduced and heating of the desert lowlands in the Aral Sea Basin 

causes local- to regional advection responsible for numerous violent cyclones (>100 dust storms per 

year; Seredkina, 1960) especially in areas adjacent to the northern shore of the Aral Sea (Zavialov, 

2005). The dust storms are particularly favoured by northern, north-western and preferentially north-

eastern winds (Romanov, 1961; Fig. 5.1) and represent the dominant mode of transport of detrital 

particles (Létolle and Mainguet, 1993; Orlovsky et al., 2005). Studies on dust storms in Central Asia 

have been mostly undertaken since the 1960s (Middleton, 1986; Romanov, 1961; Romanov, 1986; 

Seredkina, 1960; Zolotokrylin, 1996). Recently, Orlovsky and Orlovsky (2002) provided general 

characteristics on frequency, distribution and seasonality of dust storms in Central Asia, with a 

specific concern on the dust storms originating around the Aral Sea. Analyses of longer-term changes 

in zonal and meridional atmospheric circulation patters in middle Asia have been documented by 

Subbotina (1995). However, most of these pioneer studies were limited to short periods of 

observations based on instrumental data of various sources, so that dust storm distribution and 

investigations on climate forcing mechanisms in the past are still insufficiently explored. 

The principal obstacle for investigating late Holocene climate archives in western Central Asia is 

the lack of well-dated high resolution sedimentary archives. Clastic material of lake sediments forming 

in arid and semi-arid environments reliably records changes of past atmospheric dynamics. In this 

study, we present high resolution Ti and Ca XRF-scanning data and microfacies observations from 

laminated sediments at Chernyshov Bay (Fig. 5.1) and extent knowledge of atmospheric circulation 

over Western Central Asia to 1500 years ago. The data reflect the variability of clastic input and shed 

lights on changes in aeolian dynamics during the past 1500 years in connection with the main pattern 
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of spring atmospheric circulation regulating climate variability in the Northern Hemisphere, i.e., the 

Siberian High pressure system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Location map of the study area (black arrows represent the dominant wind directions 
during the winter–early spring season) and simplified stratigraphic log of Core CH1 (10.20 m) with 
lithology of Lithozone II. Lithozones I–III and gypsum horizons G1–G3 are described in the text.

V.2. Material and methods 
 

V.2.1. Coring locations 
 

In August 2002, two piston cores (Cores CH1 and CH2 with respective total lengths of 10.20 m 

and 6.2 m) were retrieved with a Usinger piston corer (http://www.uvitec.ut) at Chernyshov Bay in the 

NW Large Aral Sea (Fig. 5.1). These cores were collected 1 km off the shoreline (45°58'528’’ N, 

59°14’459’’ E) at a water depth of 22 m. Core CH1 consists of sections 21, 22, 23, 27 and 28, whereas 

Core CH2 consists of sections 30, 31 and 32. The coring sites CH1 and CH2 were separated by a few 
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meters. Correlation between Cores CH1 and CH2 were performed by matching laminations using 

photographs, physical properties (bulk sediment density, magnetic susceptibility) and XRF scanning 

data (see Fig. 2.3). 

 
V.2.2. Thin sections 

 

For microfacies analyses and micro XRF-scanning, we prepared a continuous series of 10 cm-long 

sediment samples from the interval 4.28–4-98 m in Core CH2, corresponding to the interval 4.58–5.28 

m in Core CH1 (i.e. Lithozone II plus 0.31 m in Lithozone I and 0.13 m in Lithozone III). The samples 

were freeze-dried and soaked with a transparent epoxy resin (Araldite® 2020; Vantico, Basel, 

Switzerland) and subsequently polished. An overlap of 4 cm between each thin section provided a 

detailed correlation at a scale of single laminations confirming the macroscopic correlation. Overall, 

13 thin sections were analysed under parallel and polarized light with a microscope (Carl Zeiss 

Axiophot; Carl Zeiss, Germany). Magnifications used were 25x (overview) and 100x (measurement of 

lamination thickness and microfacies description). Thin sections photographs were performed using a 

digital camera (Carl Zeiss Axiocam) and the software Carl Zeiss Axiovision 2·0. From thin sections 

we determined semi-quantitatively changes in grain size, thickness of lamination, abundance of 

selected diatom species and searched for possible micro-disturbances in sedimentation. 

 
V.2.3. X-Ray Fluorescence (XRF) scanning, magnetic susceptibility measurements 

and X-Ray Diffraction (XRD) 
 

Titanium and calcium contents of the whole core were measured at Bremen University with a 

profiling X-ray fluorescence scanner (XRF) core scanner (Jansen et al., 1998; Röhl and Abrams, 2000) 

at scanning steps of 1 cm using standard parameters (20 kV, 0.087 mA; 30 s detector accumulation 

time). When necessary, the measuring strategy was adjusted to avoid gaps. At GFZ Potsdam we 

measured the interval 4.58–5.28 m for elements Al, Ca and Ti at a 40 µm-resolution. The profiling 

was performed with a micro X-ray fluorescence scanner (EAGLE III XL; Röntgenanalytik 

Meßtechnik GmbH) at 40 kV, 0.25 mA, 10 s detector accumulation time. For the scans we used the 

Araldite®-impregnated polished slabs, prepared for thin sections. Scans of pure Araldite resin 

(without sediment) indicated zero counts for investigated elements, proving that the resin does not 

influence the results. 

Magnetic susceptibility was measured directly after core opening on the surface of split core 

halves with a Bartington MS2E sensor (GFZ Potsdam) at a resolution of 1 to 2 mm. For salt mineral 

identification we performed XRD analyses on selected samples from Core CH1 using a Siemens D 

5005 diffractometer at the University Potsdam, and used the program MacDiff 4·2·5 (Petschick, 2000) 

for mineral identification. 
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V.2.4. Lithology 
 

Sediments retrieved from Chernyshov Bay (Fig. 5.1) consist of greenish to greyish silty clays and 

dark water-saturated organic muds with sporadically-intercalated more sandy material. The sediments, 

which are finely laminated, comprise material of variable origin (terrigenous, biogenic and 

chemogenic) and size (from clay and fine silt to fine sand and mollusc shell fragments). Chemical 

precipitates, such as gypsum, occur as dispersed microcrystals in the sediment (G2; G3; Fig. 5.1) and 

discrete layers (G1). Neither erosive discontinuity, nor features of bottom traction are observed in the 

core. The laminated character of Core CH1 indicates probable settling of various autochthonous and 

allochthonous particles from the water column during seasonally varying hydrographic conditions. 

Three lithological units are recognized. 

Between 0.0 and 4.88 m (lithozone I), the sediment is mostly composed of a greyey silty to sandy 

clay intercalated with organic mud horizons whereas the uppermost part (0.0–0.5 m) consists entirely 

of a dark, organic, finely laminated mud. 

Lithozone II (4.89–5.15 m) is characterized by a horizon of laminated gypsum at its base (G2: 1-

cm thick) overlain by a 1-cm thick horizon consisting of brownish thinly-laminated sediments. This 

latter horizon is overlain by a 12.5-cm thick interval of yellowish thinly-laminated sediments which in 

turn are progressively replaced by brownish thinly-laminated sediments (11.5-cm thick interval). 

Between 5.15 and 10.20 m depth (Lithozone III), the sediments consist of a dark silty to sandy 

organic mud, often water-saturated and very rich in organic matter including allochthonous aquatic 

plant remains. The plant remains occur both as a dispersed phase in the matrix and as partly decayed 

fragments that constitute organic horizons. These sediments are characteristic of dysoxic to anoxic 

bottom-water conditions. 

No turbiditic sediments have been recognized. The hydrochemical conditions at Chernyshov Bay 

today are very pronounced. In 2002 a strong pycnocline has developed that maintains and stabilises an 

underlying anoxic deep-water body (Friedrich and Oberhänsli, 2004) that in turn influences 

sedimentation and prevents bioturbation. Hence, sediments from Chernyshov Bay show mostly well-

preserved laminations. 

 
V.2.5. Chronology 

 

In Core CH1 (see Table 1), AMS radiocarbon ages were determined using the green alga 

Vaucheria sp. and CaCO3 from mollusc shells, which were successively picked from the washed 

sediment sample and carefully cleaned from adhering particles. Algae were stored in distilled water 

within a glass vessel. For each sample, AMS 14C dating was performed using between 0.2 and 1.0 mg 

of pure extracted carbon. AMS 14C ages were measured at Poznań Radiocarbon Laboratory (Poland). 

Radiocarbon ages were corrected to calibrated (cal) ages using the IntCal04 calibration curve (Reimer 

et al., 2004). An age model for Core CH1 based on AMS radiocarbon dating is proposed in Fig. 5.2.  
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Reliable dating for the upper 5 m of core CH1 was obtained by correlation with the magnetic 

susceptibility record from parallel cores 7, 8 and 9 retrieved ca. 50 m apart from the studied cores 

(Nourgaliev et al., 2003). AMS 14C dating on cores 7, 8 and 9 was performed on the green alga 

Vaucheria sp. This correlation gives an age of 480±120 yr BP (cal. years) at 1.5 m depth for Core 

CH1. In addition, the time interval represented by Lithozone II is temporally constrained between 

655±55 cal. yr BP at 4.8 m depth and ca. 770 yr BP at 5.15 m for the laminated gypsum (Sorrel et al., 

2006). These results imply high mean sedimentation rates during the deposition of Lithozone I (3 cm 

yr-1 between 1.5 and 4.8 m) but conversely very low sedimentation rates for Lithozone II (~0.2 cm    

yr-1). Supplementary 14C dating performed on Vaucheria sp. provides an age of 1062±110 cal. yr BP at 

6.55 m, 1300±30 cal. yr BP at 7.15 m and of 1395±25 cal. yr BP at 8.50 m, while 14C dating from 

mollusc shells indicates an age of 1355±30 cal. yr BP at 7.95 m (see Table 1), implying relatively high 

mean sedimentation rates for Unit 3 (~1.5 cm yr-1 between 7.19 and 10.19 m). Moreover, based on a 

peak in 137Cs at 0.39 m reflecting the climax of the bomb period (ca. 1963–1964 AD) (Heim, 2005), 

the top of Core CH1 has been dated as post-1950. This is in accordance with 210Pb values measured 

both in the topmost part of Core CH1 (Austin et al., accepted) and in the Gravity Core Aral IX 

overlapping the first 0.5 m of Core CH1 (Heim, 2005). This is also concurrent with 14C dating 

Figure 5.2: Age-depth relation for Core CH1 based on six 14C AMS dates. 14C ages are 
shown in calendar years. 
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obtained on Vaucheria sp. that reveals an age of 108.6±0.3 pMC at 0.56 m (thus confirming a post-

1950 age). Due to a lack of dating of living algae samples from the near-shore, no reservoir correction 

can be applied yet. This is work in progress. 

 
V.3. Results 

 

V.3.1. Physical and geochemical variability in Core CH1 (Fig. 5.3) 
 

Among seven elements analysed downcore using XRF scanning only counts of Calcium and 

Titanium were selected in this chapter since the distribution of these two elements enables to highlight 

prominent changes in sediment composition and properties. Others elements like K and Fe displayed 

either similar curves to Ti or were mostly close to or below the nominal sensitivity of the instrument 

(average response for Mn: 119 cps; Cu: 24 cps; Sr: 69 cps). Calcium show the clearest signal with 

highest values between 7.57–8.27 m, 5.14–5.15 m, 1.45–1.54 m and 0.00–0.25 m, where precipitates 

of gypsum are commonly found in the sediment (G1–G3; Fig. 5.1). Because higher values of calcium 

also match with phases of salinity increase as reflected by dinoflagellate cyst assemblages (Sorrel et 

al., 2006), we regard calcium as a proxy reflecting changes in chemical water properties linked to 

reduced/enhanced evaporation in the surface waters.  

To show variability in the composition of detrital input at Chernyshov Bay, we chose titanium 

since it is clearly of terrigenous origin in the sediment fraction and influenced neither by productivity 

changes nor by early diagenetic processes. Relative abundance of Ti downcore further matches well 

with changes in the magnetic terrigenous input as reflected by the magnetic susceptibility curve. 

However, occasional mismatches between magnetic susceptibility measurements and relative 

abundance of Ti content occur, probably related to selective dissolution of magnetic Fe-oxides as they 

are redox-sensitive (e.g. Demory et al., 2005). Nevertheless, both curves display similar features, i.e., 

high relative content in Titanium corresponding to high magnetic susceptibility values. The lowest Ti 

and magnetic susceptibility values occur between 7.57–8.27 m, 5.14–5.15 m, 4.89–4.99 m and 0–0.25 

m representing the gypsum-rich levels. 

 
V.3.2. Close-up interval 4.58–5.28 m 

 

In order to gain a better understanding of the sub-millimetre geochemical variability of individual 

laminae and to decipher the sedimentation process dynamics, we combine here a microfacies analysis 

at very high-resolution with XRF scanning for the interval 4.58–5.28 m. The studied time interval 

(1150–1400 AD) corresponds to the lowermost part of Lithozone I, the entire Lithozone II and the 

uppermost section of Lithozone III. At the macroscopic scale, Lithozone II appears rather different to 

the adjacent Lithozones I and III, reflecting thus major change in depositional processes. 
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Figure 5.3: Stacked magnetic susceptibility (Mag. susc.) and X-Ray fluorescence (XRF) data for 
calcium and titanium in Core CH1. Black thin lines represent original data; red thick lines are 
smoothed curves using a 21-point and 11-point running average for magnetic susceptibility and 
XRF data, respectively. The light-grey shaded area refers to the close-up interval discussed in 
Chapter V.3.2. 

At the microscopic scale, these discrepancies are mostly related to changes in detrital inputs 

implying changing dilution rates of biogenic material. In total, 1105 layers have been identified within 

the studied interval 4.58–5.28m, 274 of them probably being of organic origin. The thickness of these 

layers ranges from ca. 0.025 to 20 mm. In the studied interval, three distinct microfacies (Fig. 5.4) are 

distinguished: (A) detrital-dominated sequence, (B) organic-dominated sequence, (C) authigenic 

chemical precipitates. 

 

(A) Detrital-dominated sequences (4.58–4.89 m; 5.00–5.13 m; 5.15–5.28 m) 

Detrital-dominated sequences consist of graded, non-graded and transitional discrete detrital layers 

without primary textural organization, alternating with “organic-like” laminae. Detrital layers (Fig. 

5.4.5) are composed of biogenic clasts (ostracods, diatoms, foraminiferans, molluscan shells) and 

detrital grains with grain sizes ranging from clay sized to medium-sized [4–30µm] and coarse silt 

particles [ca. 30–63µm]. Isolated sand grains (up to ca. 170x100 µm) were observed in a few cases. 

Prevailing mineral phases are allochtonous carbonates from the surrounding Palaeogene marls (Bolle 

and Adatte, 2001), sub-angular to angular xenomorphous quartz, feldspars, rounded glauconite grains, 
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amorphous pyrite, gypsum crystals (5.15–5.18 m) and clay minerals. Detrital layers usually contain 

mixed species diatom assemblages (Actinocyclus spp., Cyclothella spp., Fragilaria spp., Navicula 

spp., Gyrosigma spp., Aulacoseira spp., Nitzschia spp., Amphora spp., Cocconeis spp.) however 

commonly dominated by the large centric diatom (> 50 µm) Actinocyclus spp. randomly distributed 

throughout the layer. Clay-sized barren laminae were observed in a few cases. The thickness of detrital 

layers varies from 0.025 to 20 mm, but most of them are >0.2 mm-thick. “Organic-like” laminae (see 

Fig. 5.4.6) occur more seldom. They are commonly matrix-supported with a dominance of clay-sized 

detrital particles and medium silt-sized [ca. 4–25µm] detrital particles. “Organic-like” laminae are 

characterized by higher contents in black organic matter and usually by higher abundance in diatoms, 

notably Actinocyclus spp. and Navicula spp. This would suggest a less detritally diluted and quieter 

deposition mode than during the deposition of detrital layers in Chernyshov Bay. 

 

(B) Organic-dominated sequences (4.89–5.00 m; 5.13–5.14) 

Organic-dominated sequences (Fig. 5.4.1) are characterized by a regular alternance of 

diatomaceous organic mud laminae and detrital laminae with no obvious primary textural 

organization. Detrital laminae are composed of detrital grains with grain sizes ranging from clay sized 

to angular medium-sized [4–30µm] and coarse silt particles [ca. 30–63µm]. Isolated sand grains (up to 

ca. 100x100 µm) were observed in a few cases scattered in the detrital laminae. Prevailing mineral 

phases are allochtonous biogenic carbonates (mostly remains of coccoliths) with subordinate 

xenomorphous quartz, feldspars and clay minerals. The detrital laminae usually contain scarce mixed 

diatom assemblages (most present are Actinocyclus spp.: 4.88–4.97 m and Navicula spp.: 4.97–5.00 

m; 5.11–5.12 m) but sometimes are even barren in diatoms (Fig. 5.4.1). The thickness of detrital 

laminae varies from 0.025 to 2.65 mm, but the majority of them are >0.1 mm (averaged thickness: ca. 

0.3 mm). Diatomaceous organic mud laminae commonly consist of a mixture of organics and fine- to 

medium sized [4–30µm] detrital grains forming the matrix but also often occur matrix-free as well, 

and only diatom-supported (e.g. diatom ooze). Diatom ooze laminae are typically near-monospecific 

oozes of Actinocyclus spp. (Fig. 5.4.2). The thickness of diatomaceous mud laminae varies from 0.05 

to 0.5 mm (averaged thickness: ca. 0.15 mm). As to the regularity in the alternance of the couplets 

“diatomaceous mud laminae–detrital laminae” (but triplets are also occasionally observed based on the 

presence of an additional distinct detrital lamina), we regard these couplets as probable seasonal 

deposits, that we describe as “varve-like” sediments. XRD analyses conducted at 5.02 m and 5.07 m 

revealed the presence of halite (2θ= 31.718°; 45.487°) in sediments, which matches well with highly 

saline conditions as reflected by dinoflagellate cyst assemblages (Sorrel et al., 2006). 

 

 

 

 

Figure 5.4: Thin-section images (crossed polarized light) of the three microfacies types identified: 
(1–2) organic-dominated (‘varved-like’) sequence (32W3; 4.89–5.00 m; microfacies ‘B’); (3–4) 
authigenic chemical precipitates (32W5; 5.14–5.15 m; microfacies ‘C’); (5–6) detrital-dominated 
sequence (32W18; 4.58–4.89 m; microfacies ‘A’). 
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(C) Authigenic chemical precipitates (5.14–5.15 m) 

Authigenic chemical precipitates consist of isomorphic crystals of gypsum (Fig. 5.4.3–5.4.4) with 

grain size ranging from 20x25 µm up to ca. 50x65 µm. Authigenic deposits are generally deprived of 

any matrix; however they were occasionally observed slightly matrix-supported as well, with clay-

sized detrital grains forming the matrix. Authigenic gypsum precipitates are usually barren in diatoms. 

Its presence in significant abundance has been further confirmed by XRD analysis performed at 

5.15m, displaying typical peaks at 2θ= 11.705°, 20.802° and 29.193°. 
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Ultra high-resolution XRF scanning and microfacies analysis (Fig. 5.5) 
 

As inferred from Fig. 5.3, Titanium is regarded as a reliable proxy for tracing changes in detrital 

terrigenous inputs at Chernyshov Bay. In the studied close-up interval (Fig. 5.5), the Aluminium curve 

displays mirrored variations with Ti suggesting that this element is similarly of terrigenous origin 

(mainly in the clay fraction), neither influenced by productivity changes nor by early diagenetic 

processes. In general, the thickness of the laminations follows the same trend as the Al and Ti 

distribution through the interval, i.e., the thicker the lamination, the higher Al and Ti count rates. This 

is especially obvious between 1180 and 1360 AD (e.g. 4.74–5.15m), but less pronounced in the 

uppermost part of the interval (4.58–4.68m). Conversely, the thinnest laminations correlating with the 

lowest Al and Ti values occur within the intervals 4.89–5.00 m and 5.13–5.14 m. In order to get a 

better understanding of the composition of laminae, i.e., the relation between biogenic and 

mineralogical grains, we added on Fig. 5.5 the relative abundance of Actinocyclus spp. as well as a 

grain size index corresponding to the averaged grain size measured on detrital particles, for each 

lamination identified. In general, both curves show a remarkable anti-correlation, especially between 

4.58–4.68 m (microfacies A) and 4.74–5.15 m, where increased content in Actinocyclus spp. correlate 

with smaller grain size. Moreover, plots of relative abundance of Actinocyclus spp. and lamination 

thickness yield conspicuous anti-correlated features through this interval, with lower content in 

Actinocyclus spp. corresponding to thicker laminations (4.58–4.68 m; 5.00–5.13 m; 5.15–5.28 m). The 

opposite pattern is particularly obvious in the upper part of Lithozone II (4.89–5.00 m; microfacies B). 

Though no straightforward correlation is obvious between the grain size and the lamination thickness, 

they both show similar features in general, with the same trend. 

 
V.4. Interpretation and discussion 

 

V.4.1. Reconstruction of environmental dynamics during 1150–1400 AD 
 

To infer the signals contained in the inorganic phases of the sediments, the pathway of the 

elements Al and Ti must be assessed. Ti, which is commonly concentrated in heavy minerals, is 

preferentially enriched in iron-titanium oxides concentrated in the clay and silt fractions. Because plots 

of Ti and Al show a very good correlation in the interval 4.58–5.28 m (Fig. 5.5), we propose that both 

elements are of similar origin (although Al is preferentially enriched in the clay fraction) and thus 

reflect changes in detrital input. At Chernyshov Bay, the fluvial discharges from the Syr Darya and 

Amu Darya Rivers are remote from the coring location (Fig. 1.1) and may, therefore, unlikely deliver 

detrital Ti-bearing particles to the coring site. Similarly, the riverine discharge from small ephemeral 

rivers eroding the adjacent hilly outcrops consisting of early and late Tertiary marls can hardly account 

for the high Ti content recorded in Core CH1. Hence we postulate that water- transported suspended 

particles are less important contributors to terrigenous particles at Chernyshov Bay. Instead, due to the 
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position of the Aral Sea in a basin characterized by semi-desert to desert conditions, aeolian 

remobilization of weathered sediment particles by dominant NE winds is the crucial process of 

reworking as earlier proposed by Mainguet et al. (2002) and Singer et al. (2003). Extreme heating of 

the dark desert areas of Central Asia (Kyzyl Kum = black desert) favours the formation of dust storms 

during the summer season (Orlovsky et al., 2005). During spring, regional pressure distribution in 

combination with raising temperatures over the continent cause the evaporation of the weak seasonal 

precipitation and the drying of the upper silty and sandy surface beds, both favourable conditions for 

the formation of dust storms during springtime too (Orlovsky and Orlovsky, 2002). In the Aral Sea 

basin, a maximum frequency of dust events has been indeed registered during spring in the plain areas 

including the Ustjurt Plateau and Central Karakum Deserts (> 100 dust storms per year), and in the 

middle part of the Amu Darya River (Orlovsky et al., 2005). Hence, aeolian transport of particles is by 

far the dominant process for removal of detrital particles in the northwestern part of the Aral Sea, and 

can thus realistically account for the high sedimentation rates recorded in Core CH1. We then propose 

that variations in Al and Ti are mainly the result of changes in the intensity of wind energy. 

 

Moreover, because both geochemical proxies and lamination thickness are positively correlated 

(i.e. a high content in detrital elements corresponds to thicker laminations suggesting a genetic 

relationship for these components), we use the lamination thickness as a reliable indicator of wind 

dynamics. The most conspicuous changes in frequencies of Actinocyclus spp. inversely mirror 

variations in lamination thickness (Fig. 5.5). This would suggest that the abundance of Actinocyclus 

spp. in the sediment is rather linked to sedimentation processes than to productivity in surface waters, 

reflecting the intensity of dilution as to the deposition of particles on the lake bottom. As a result, the 

more (less) frequent dust storms, the denser (weaker) detrital particle rain in the water column, and the 

higher (weaker) dilution of biogenic particles in laminations. A similar phenomenon can be observed 

from other diatom species (Navicula sp. for instance) whose abundance in sediment inversely matches 

changes in lamination thickness (not shown here). This implies that some of the biogenic grains found 

at the coring location are not in-situ but may originate from the remobilization of sub-

contemporaneous near-shore sediments. In addition, the grain size can serve as a further proxy for 

characterizing wind dynamics, i.e., the stronger the storms, the coarser the detrital grains brought into 

the system (Fig. 5.5). 

 

Using geochemical and sedimentological proxies at high resolution, the following picture of wind 

dynamic evolution can be drawn for the interval 4.58–5.28 m covering the time interval ca. 1150–1400 

AD. 
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Figure 5.5: High-resolution XRF (Al, Ti: 40 µm) and microfacies (relative abundance of Actinocyclus 
spp., grain size and lamination thickness) palaeoclimatic proxy data for the close-up interval [4.58 m–
5.28 m; ca. 1150–1400 AD]. Plotted data are smoothed curves using a 9-point and 101-point running 
average for microfacies and XRF data, respectively. Shaded area corresponds to time periods 
characterized by a considerable decrease in dust storm frequency in the Aral Sea Basin. 

High content in Al and Ti, thick laminations and low abundance of Actinocyclus spp. suggest 

elevated aeolian detrital inputs in Chernyshov Bay in the uppermost part of Lithozone III (ca. 1150–

1180 AD), linked with prominent dust storms and strong wind dynamics (microfacies B). The 

lithological transition II/III is characterized by a drastic waning of wind dynamics. Minimal values of 

Ti and Al in the gypsum layer (microfacies C) at ca. 1180 AD document decreasing detrital inputs at 

that time, during a pronounced salinity increase in the Aral Sea linked to reduced meltwater discharges 

(Sorrel et al., 2006). Subsequently, on the basis of higher values of detrital inputs (Ti, Al), thicker 

laminations containing coarser grains and an enhanced dilution of Actinocyclus spp. in the sediments, 

stronger and more frequent dust storms are inferred in the lower part of Lithozone II (5.13–5.00 m; ca. 

1210–1265 AD). Wind dynamics, however, rapidly weakened upwards (5.00–4.89 m; ca. 1265–1310 

AD), as reflected by drastically lower detrital inputs (Ti, Al), thin “varve-like” brownish sediments 

containing oozes with abundant Actinocyclus spp. (microfacies A) and low sedimentation rates (<0.2 

cm yr-1). Between ca. 1360 and ca. 1400 AD  prominent and frequent dust storms responsible for high 

sedimentation rates in Lithozone I (~0.8 cm yr-1; microfacies B) are implied, through elevated values 

of Al and Ti, frequent occurrences of thicker laminations and an enhanced dilution of diatoms.  
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V.4.2. Control of wind dynamics in the Aral Sea 

 

Wind dynamics regulating the strength of dust storms, and thus the detrital eolian input into the 

Aral Sea, is an important factor in the Central Asian climate system. Maximum frequency of dust 

storms and high wind speeds occur during the spring months (Létolle and Mainguet, 1993), favoured 

by an increase in intensity of the general circulation due to the seasonal warming, more energetic 

cyclone activity and cold-wave intrusions (Orlovsky et al., 2005). Hence, because changes in spring 

wind dynamics are the result of changes in the atmospheric circulation on a broad-scale associated 

with seasonal shifts in temperature and pressure gradients, it is crucial to examine connections with 

other climate dynamics. 

 

In western Central Asia the seasonal wind field is controlled by the following feature and process, 

(i) the Siberian High (SH) feature and (ii) the Tibetan Plateau thermal forcing. The Siberian High 

anticyclonic feature is broadly recognized as the dominant mode of winter / spring climate over 

Eurasia (Sahsamanoglou et al., 1991; Savelieva et al., 1991). Its intensity and geographical position 

strongly control precipitation and atmospheric circulation patterns (meridional or zonal) at mid-

latitudes of Asia (Aizen et al., 2001) though its influence on snow-cover extent is questionable (Clark 

et al., 1999). During spring, the Aral Sea Basin in western Central Asia is influenced by the western 

periphery of the SH and experiences air mass intrusions from the north, northeast and northwest 

(Orlovsky et al., 2005; Zavialov, 2005). A recent study by Meeker and Mayewski (2002) based on 

instrumental data shows that maxima in non-seasalt potassium (nssK) deposition in Greenland 

correlate to a spring strengthening of the SH pressure system which obviously has an impact on the 

wind pattern in W Central Asia. This proxy has been also used by Rohling et al. (2002) for examining 

the influence of winter/spring intensity of the SH on Aegean sea-surface temperatures. Therefore, in 

W Central Asia, time periods characterized by increased (reduced) content in detrital input (Ti) 

corresponds to stronger (weaker) and more westward (eastward) SH during enhanced (reduced) spring 

meridional (zonal; Clark et al., 1999) atmospheric circulation. The organization of the major long-

wave pattern, when a meridional circulation mode prevails, results in increasing frequency of the 

synoptic processes with large-amplitude stationary waves, low pressure systems with small barometric 

gradients (Subbotina, 1995). It has to be kept in mind, however, that years with prolonged ice-cover 

extent in the Aral Sea Basin (April–May) may considerably reduce the aeolian remobilization of 

sediment particles and occurrence of spring dust storms, independently of the strength and position of 

the Siberian High (Clark et al., 1999). 

 

On the other hand, the feedback of the Tibetan Plateau heating which leads to dry and hot 

conditions to the west is crucial for the summer circulation in the Aral Sea Basin (Duan and Wu, 

2005). According to these authors a divergence/convergence develops in the lower/upper layers, a 
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circulation embedded in the large-scale circulation pattern forced by the Eurasian continental heating 

with prevailing E-NE winds at the surface, resulting in multiple summer dust storm events in the Aral 

Sea Basin. However, since the maximum frequency of dust storms occur during the spring months we 

rather focus here on the spring mechanisms regulating changes in wind dynamics in W Central Asia, 

i.e., the SH. 

 

For the past 1400 years, Meeker and Mayewski (2002) documented prominent variations in 

strength of the Siberian High associated with changing modes of atmospheric circulation over Eurasia, 

based on glaciochemical series from the GISP2 Ice Core (O’Brien et al., 1995; Mayewski et al., 1994). 

Here, we examine the general state of the atmosphere in W Central Asia for the past 1500 years based 

on changing deposition of Ti representing aeolian detrital inputs in Core CH1 correlated with the SH 

record of Meeker and Mayewski (2002) (Fig. 5.6). Our site location, in the continental interior of Asia, 

may even represent a more suitable area for characterizing changes in circulation pattern in W Central 

Asia, compared to what is recorded in Greenland after transport in the atmosphere far to the East. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 5.6: Comparison between the bulk Titanium record of Core CH1 from the Large Aral Sea (a), 
the non-seasalt Potassium (nssK) (b) and the Siberian High (c) records of Meeker and Mayewski 
(2002). Red thick lines represent smoothed curves using a 11–year and 20–year running average for 
Titanium and nssK–Siberian High records, respectively. 

Based on low content of Ti and nssK in Cores CH1 and GISP2 (Fig. 5.6), respectively, relatively 

weak spring (i.e. March-April-May or MAM) SH characterize the period 700–1150 AD, with the 

prevalence of a more zonal circulation. Prior to 700 AD (600–700 AD), intensity of the SH fluctuate 

with more contrasts, in a trend of a more pronounced atmospheric circulation. This period follows a 

phase of stronger SH from 450–600 AD as reflected by increased deposition of Ti in the Aral Sea. 
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The Medieval Warm Period (MWP) and Little Ice Age (LIA) provide the most suitable recent 

analogues for naturally warmer and colder than present climate (Crowley, 2000; Bradley, 2003). 

During the late MWP (1200–1400 AD), aeolian detrital markers in Core CH1 exhibit two abrupt shifts 

assignable to a pronounced modification of atmospheric circulation in W Central Asia. Significant 

weaker SH are inferred between ca. 1180–1210 AD and ca. 1265–1310 AD from minimal deposition 

of Ti (see also Fig. 5.5) suggesting the onset of prevailing zonal circulation, whereas intermediate 

periods (ca. 1210–1265 AD; ca. 1310–1400 AD) are indicative of moderately stronger SH, with a 

more meridional MAM circulation. Similar features are observed in nssK concentrations from 

Greenland (Meeker and Mayewski, 2002), although the timing of these events slightly differs (Fig. 

5.6). A possible explanation for these discrepancies can be the error bars assignable to dating for both 

age models. In the GISP2 Ice Core, the current estimated age error is 2% for the time span 0–11,640 yr 

BP, which corresponds to about 40 years (Alley et al., 1993; Meese et al., 1994). In our age model, age 

uncertainty as discussed in Chapter 2.5 indicates possible error ranges of ca. ±30 years between 1200 

and 1400 yr AD. 

 

At the transition from MWP to LIA, the dominant mode of atmospheric circulation changed, 

coinciding with a transition from a period of relatively weak MAM SH to one in which the MAM 

circulation greatly intensified throughout the LIA (Meeker and Mayewski, 2002). This change in 

pressure distribution in Asia explains the increasing concentration of nssK in the GISP2 Ice Core 

between 1400 AD to about 1750 AD. We would thus expect to show an imprint of this atmospheric 

change on the wind dynamics in W Central Asia. Comparing the dust flow pattern from Core CH1 (Ti) 

with concentrations of nssK (Fig. 5.6), we observe that in the Aral Sea the dust input was increasing at 

ca. 1350 AD and remained high until about 1750 AD, indicating the prevalence of a more meridional 

atmospheric circulation in Central Asia. Subsequently, a prominent coeval decrease in Ti and nssK 

contents documents weaker MAM SH between 1750 and 1800 AD. In contrast, the period 1800–1980 

AD records intensified MAM SH in W Central Asia, as reflected by elevated input of aolian particles 

in the Aral Sea and relatively high concentrations of nssK in Greenland. In most recent sediments, a 

significant decrease in the frequency of dust storms occurs after 1980 AD. This phenomenon has been 

recorded in other studies (Chub, 1998; Galaeva, 1998; Usmanov, 1998; Meeker and Mayewski, 2002), 

associated with prominent change in the atmospheric circulation pattern towards a weakening of the 

SH and a more zonal flow over East Asia (Savelieva et al., 1991; Clark et al., 1999; Panagiotopoulos 

et al., 2005). The decrease in the intensity of the SH may be linked with the global warming of the 

atmosphere, and is expected to amplify by the forthcoming years (Druyan & Rind, 1991). 
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V.5. Conclusions 
 

Based on very high-resolution microfacies and inorganic geochemical analyses, we report 

prominent changes in wind dynamics in the Aral Sea Basin during the past 1500 years, associated with 

the atmospheric circulation system over western Central Asia. Changes in wind dynamics appear to be 

anchored and controlled by the intensity of the Siberian High pressure system during springs. Based 

on high relative content of Titanium in Core CH1, more intense meridional atmospheric circulation 

associated with stronger SH prevailed during 450–700 AD, ca. 1210–1265 AD, ca. 1350–1750 AD 

and 1800–1975 AD. In contrast, lower Ti content during ca. 1180–1210 AD, ca. 1265–1310 AD, 

1750–1800 AD and after 1980 AD document weaker spring SH with a reduced and more zonal 

atmospheric circulation. Other climate forcing may play a significant role in the regulation of seasonal 

temperature and pressure gradients determining the intensity and the frequency of dust storms in 

Central Asia. Recent studies based on instrumental data (air temperature) and modelling demonstrated 

a possible influence of the El Nino Southern Oscillation (ENSO) in Western Central Asia (Gruza et 

al., 1999; Barlow et al., 2002; Khan et al., 2004). A possible influence of the southwest Indian 

monsoon on the regulation of wind dynamics in the Aral Sea Basin has been also suggested by several 

authors (e.g. Létolle and Mainguet, 1993) but in fact scarcely explored. Further investigations may 

show whether the Aral Sea sediments also hold information on past changes of the Tibetan thermal 

forcing which today plays an important role on ocean–atmosphere–land interactions during the 

summer season. 
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Chapter VI: Synthesis 

 
This thesis, embedded in the international INTAS/DFG CLIMAN project 

(http://climan.gfz-potsdam.de), presents high-resolution palaeoclimate studies in the Aral Sea 

Basin during the past 2000 years. Palynological and sedimentological proxies have been 

explored to (i) reconstruct late Holocene environments and climate change in the Aral Sea, 

and (ii) compare our results with other climatic records to better understand which 

mechanisms govern climate change in western Central Asia. 

In this chapter, we firstly aim to discuss to which extent human activities might have 

exerted an influence on the Aral Sea’s water balance. This section is discussed on the basis of 

a fourth paper: “Archaeology and Climate: Settlement and lake level change at the Aral Sea” 

by Boroffka et al. (Geoarchaeology in press), based on new archaeological findings combined 

with relative abundance of Ca in Core CH1, reflecting to a great extent the evaporation 

balance. 

 In the second part of this chapter, we discuss what kind of forcing is basically controlling 

climatic change during the past 2000 years. We ultimately aim to distinguish between all the 

active climatic systems (i.e., internal forcing) which control climate variability in western 

Central Asia, and to discuss to which extent external forcings impact on our system. 

 
VI.1. Human influence on the hydrological balance (Boroffka et al., 

in press) 
 

The Aral Sea region is an excellent location for tracing human reactions to past climate 

change. In this climatically sensitive area, alternating between semi-arid and arid conditions, 

human influence can be traced back to the first millennium B.C (Boroffka et al., 2005). The 

Aral Sea Basin with extended arid semi-deserts and deserts has potential agricultural plains 

along the two major inflows (Amu Darya and Syr Darya), which were actively cultivated far 

back in historical time. The modern regression, starting 1960, has received much attention 

since the political opening of the former Soviet Union (e.g. Aral´skij krizis, 1991; Létolle and 

Mainguet, 1996; Micklin and Williams, 1996). While older lake level oscillations and human 

reactions to environmental change have hardly been studied, the latter is clearly triggered by 

 91

http://climan.gfz-potsdam.de/


Chapter VI: Synthesis 

man, and its effects on the environment and the life of local populations have became a 

subject of discussion far beyond the scientific community (Létolle and Mainguet, 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 6.1: Salinity changes and lake water level of the Aral Sea as controlled by river inflow 
and seasonal evaporation. The water balance is inferred from the relative abundance of the 
element Ca (counts reflect relative abundance) scanned at 1 cm-resolution with an XRF 
logger in Core CH1. Ca mainly traces the abundance of gypsum, which records the onset of 
salinisation. Major fluctuations in Ca abundance are assigned to climatically and, to some 
extent, anthropogenically-driven lake level changes. Important archaeological sites are 
assigned to specific lake level changes. 

Newly discovered archaeological sites from both northern and southern shores of the Aral 

Sea allow to reconstruct the history of human settlement in the past which, when available, 

were compared to lake level stands as recorded in palaeoshorelines and terraces (Fig. 6.1; 

Boroffka et al., 2005). Archaeological findings are integrated with the Aral Sea’s water 

balance as reconstructed from the relative Ca content in Core CH1, a proxy for gypsum 

 92



Chapter VI: Synthesis 

deposition, to evaluate the human influence on the hydrological balance during the past 2000 

years. Four levels of gypsum-rich mud, forming distinct bright beds or dark clayey muds with 

abundant idiomorphic gypsum crystals (Fig. 6.1) are described in Core CH1 (see also Chapter 

V.2.4). As gypsum (CaSO4 
. 2H2O) starts to precipitate when salinity exceeds 26–28 ppt 

(Bortnik and Chistayeva, 1990), it becomes a typical indicator for salinisation and we use the 

element scans of Ca to keep track of its abundance. Hence, relative abundance of this element 

is used to estimate beginning changes in the river inflow, which control together with the 

annual evaporation/precipitation budget, the chemical water balance and at longer time range 

the Aral Sea’s lake level. 

 

For late Classical Antiquity (ca. 1600-1500 yrs BP) a new site, Pulzhaj, was discovered at 

an elevation of 53 m a.s.l. to the southwest of the Aral Sea, at the foot of the Ustjurt Plateau 

(Fig. 1.1). Several coins were found, as well as large quantities of high quality ceramics, 

including original imports from China, Iran and Saraj or Sarajchik (capital of the Golden 

Horde near the mouth of the Wolga River), and are dated to the 4th – 5th and 13th – early 14th 

centuries AD. Hence this site can reliably witness for two successive regressions of the Aral 

Sea. The first regression is indicated by high Ca contents and the occurence of gypsum in 

sediments from Chernyshov Bay deposited between ca. 2000 and 1600 yr BP (0–400 AD) 

(Fig. 6.1). This event might be coeval to the deposition of mirabilite in the western basin 

(Maev and Karpychev, 1999), probably configurated as a series of shallow hypersaline lakes 

(Aleshinskaya et al., 1996), during a prolonged period of cold and dry conditions in the Aral 

Sea region (see Chapter V.6). As a salinity of 150 ppt is required for the precipitation of 

mirabilite (Létolle et al., 2005) a lake level of 23 m.a.s.l. would be inferred, making this 

regression more severe than the current one. The extensive irrigation systems initiated by the 

Persians in the 7th–5th centuries BC along the Amu Darya and the Syr Darya (Tolstov, 1962), 

at least partly, date to this period and culminated around 300–400 AD. Reports from Greek 

sources (Barthold, 1910), although not very accurate by modern standards, indicate that the 

Amu Darya was flowing to the west, through the Uzboj channel, into the Caspian Sea, so that 

a regression, possibly intensified by human activities seems evident (see Chapter III.4.2). 

After 300–400 AD, archaeological surveys document that the area southwest of the Aral Sea 

dried up completely and that the river diversion towards the Caspian Sea via the Uzboj has 

been stopped (Barthold, 1910). This may coincide with the destruction of hydraulic facilities 

in the Korezm region by Mongol warriors (the Huns Hephtalites) around 380–400 AD 

(Létolle and Mainguet, 1993), which may have resulted in diverting waters from the Amu 
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Darya back to their natural course and discharge into the Aral Sea. For the low level stand 

dated at about 550–600 cal. yr AD, however, no time equivalent archaeologic event has been 

reported yet, suggesting that this moderate regression is likely to be due to climate change. 

 

The Early Medieval / Late Antiquity (7th–10th centuries AD) lake-level lowering, though 

moderate, is probably man made as no climate change is recorded in the region. In contrary, 

this is a period of increased temperature favourable for the growth of juniper in the Tien Shan 

(Esper et al., 2002a), especially between 800 and 1000 AD. Higher Ca content in Core CH1 is 

therefore likely to reflect a further episode of irrigation. Although irrigation systems were not 

as extensive as those previously (Boroffka et al., 2005), historical reports document by the 

9th–10th centuries AD that the Korezm Basin and the area southwest from the Aral Sea was 

again exploited (Tsvetsinskaya et al., 2002). 

 

From dinoflagellate cyst assemblages, increased salinities are reported from ca. 900 AD 

(see Chapter III) and prelude the occurrence of a major regression during the 13th-14th 

centuries AD, as documented by the gypsum layer from 4.96–5.05 m (Fig. 6.1). At Pulzhaj, 

the atypical stone foundations of houses, indicating prosperity, are dated to the 13th – early 

14th centuries AD. Some time after the early 14th century AD lower site was abandoned 

because of flooding and has been drowned in a newly formed bay of the Aral Sea. Other new 

archaeological sites from the Middle Age have been identified both in the north and in the 

south of the Aral Sea (Boroffka et al., 2005). The sites in the north yielded imitations of 

Chinese porcellain and high quality glazed pottery, evidencing connections to long distance 

trade routes known collectively as the northern Silk Route. Further to the south, in the 

northern part of the Great Aral Sea, a mazar (islamic holy grave site) has been identified next 

to a settlement, named Kerderi, at an altitude of 32 m a.s.l. Both could be dated to the 13th – 

14th centuries AD (Boroffka et al., 2005). While the mazar lies on an artificial mound and is 

exposed today at least during the summer season, the adjacent settlement is still mostly 

submerged, indicating that the water level must have been clearly below 31 m a.s.l. during the 

Middle Age. This regression has been already described previously though considerably 

underestimated, when the lake level had been located around 44/45 m a.s.l. (Aladin and 

Plotnikov, 1995; Boomer et al., 2000). According to ancient documents (Barthold, 1910), the 

Amu Darya discharged into the Aral Sea until the devastating Mongol invasion in 1221, when 

reported that Genghis Khan’s army destroyed hydraulic installations along the Amu Darya. 

Though, from historical earthquake, records a major event has been reported for 1221 in 
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western Central Asia. Hence, we can not exclude yet that river bed geometry in the flat delta 

area has been drastically modified by tectonical offsets, leading to deviations in flow 

direction. Shortly later, irrigation systems and large dams were reconstructed. However, the 

beginning of the 13th century AD is marked by pronounced lowered temperature in the Tien 

Shan (Esper et al., 2002a) which may have considerably reduce the contribution of meltwater 

to the flow of the tributaries during the melt season (Chapter III). As fluvial input account for 

80% of the hydrological input into the Aral Sea, such a reduction in water inflow may have 

been drastic for lake levels and thus lead to a severe regression. Therefore it is more likely 

that climatic change rather than anthropogenic activity is responsible for the onset of this 

regression, even if human activities might have amplified to some extent the lake-level fall. 

Shortly later lake level may still be low, given that Hamdallah Kazwînî in 1339 AD mentions 

that the Aral Sea is a salt lake. Shallow basins may have disappeared completely, since the 

merchant Bedr-ad-dîn al-Khowârizmi does not refer to any lake at all, although he does 

describe the lower Syr Darya (Barthold, 1910; Létolle and Mainguet, 1996). 

 

The following regression, possibly a time equivalent to the Little Ice Age, is clearly 

documented after 480 ± 120 cal yrs BP in Core CH1 by gypsum-rich silty clays and higher 

abundance in Ca (Fig. 6.1). It is only at 1573 AD according to a report by Khan Abulghazi 

(Barthold, 1910) that the Amu Darya changed its course and discharged again into the Aral 

Sea. Further support for a second regression during the Little Ice Age comes from drowned 

Saxaul stands, which had been dated to 287 ± 5 14C yrs BP (307 cal. yrs BP) (Boomer et al., 

2000, p. 1266). Similar stands, yet undated, were also observed near the present shoreline at 

the southern edge of the western basin (44º20’42”N; 58º16’56”E), a region just fallen dry 

during the last CLIMAN expedition in late summer 2003. Both regressions correspond to 

reduced temperature in the Tien Shan mountains (Esper et al., 2002a), resulting in lowered 

meltwater discharges into the Aral Sea during spring. Thus, as for the lake-level lowstand 

recorded during the 13th – 14th centuries AD, these regressions are most probably climatically-

driven through the onset of colder and drier conditions in the region. No significant human 

activity, which could have added to the negative water balance, is known for this time period. 

 

We show that Aral Sea is indeed an excellent area for studying interactions between 

human activity and water level changes. However, most shifts in human adaptation strategies, 

which can be dated by archaeological material, have to be explained to a great part by climate 

changes. Before 1850 AD, the lake level had reached again about 55 m.a.s.l., which is 
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probably the highest Aral Sea’s level during the Holocene and probably as far back as to the 

Palaeolithic Age as no archaeological remains were found between 35,000 and 7,000 yrs BP. 

Until 1960 AD, the lake level had decreased only slightly and it fluctuated around 53 m.a.s.l. 

(Létolle and Mainguet, 1996). As meteorological data show a steady increase of annual 

temperatures over the region during the 20th century (Lioubimtseva et al., 2005), it implies 

that without extensive irrigation activities, lake levels would not have been subjected to the 

regression witnessed today. A readjustment of the present low water level to present-day 

climatic conditions is, therefore, basically possible within less than few decades once 

irrigation will be considerably reduced. 

 
VI.2. Natural forcing factors 

 

VI.2.1. Climate dynamics (internal forcing mechanisms) 
 

The climatology in western Central Asia can be defined by all the interactions between the 

active systems (Eastern Mediterranean Low, Siberian High, NAO, etc) that control the 

seasonal variability of climate conditions and its amplitude (Fig. 6.2). 

Such interactions between active systems have a primary impact on the hydrological 

balance of the Aral Sea. Due to the strong dependence of the Aral Sea to hydrological inputs 

from its tributaries, the regressions and associated salinity increases recorded at Chernyshov 

Bay are ultimately linked to fluctuations in meltwater discharges during spring (Chapter III). 

The amplitude of the contribution in glacial meltwater inputs into the Aral Sea is thus largely 

controlled by temperature variations in the Tien Shan and Pamir Mountains where melting 

glaciers and snowfields feed the Amu Darya and the Syr Darya rivers. One source of moisture 

for the Aral Sea region is the Eastern Mediterranean cyclonic system where depressions occur 

and migrate across the Middle East and Central Asia during late winter and early spring 

(Chapter IV). As the Eastern Mediterranean region is strongly influenced by the polarity of 

the NAO during winter, the modulation of pressure distribution in the Atlantic Ocean is 

believed to have a significant impact on the humidity provided to Central Asia. However, 

when trying to ascertain a connection with the NAO, it is necessary to examine and quantify 

the genuine role of the westerly Jet Stream (WJS) which is another source of moisture in 

western Central Asia. 
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Figure 6.2: Past environmental and climate variability in the Aral Sea Basin during the last  
2000 years (internal forcing) based on the results developed in Chapters III, IV and V. 
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By now, the lack of proxy data that would allow establishing relationships between the WJS 

and humidity in western Central Asia confines such connection to speculations. Forthcoming 

analyses would thus consist in extracting new cores from other lakes in the high catchment 

area (Tien Shan, Pamir Mountain ranges), where the humidity carried by the WJS precipitates 

as snow during winter.  

This study, based on a multi-proxy approach, has also shown that besides a primary 

influence on hydrological changes during the past 2000 years, interactions between all active 

systems also control the wind dynamics within Central Asia. During spring, the Aral Sea 

Basin is influenced by the western periphery of the Siberian High (SH) and experiences air 

mass intrusions from the north, northeast and northwest (Orlovsky et al., 2005; Zavialov, 

2005). We have demonstrated that the growing number of dust storms that occur when the 

continent is heating was primarily controlled by the SH (Chapter V; Fig. 6.2), whose intensity 

determine the temperature gradients over western and Central Asia (Panagiotopoulos et al., 

2005). However, the prevalence of a northwesterly flow, the associated anticyclonic vorticity 

advection and the persistence of low temperatures during winter generally favours the 

development of the SH (Clark et al., 1999). These retroactive interactions thus imply a 

feedback mechanism between the severity of winters and the development of the SH, which 

ultimately has an impact on the frequency of dust storms and the intensity of detrital inputs in 

the Aral Sea Basin. Indeed, the dust load transported by winds depends on (i) the ease for 

storms to remobilize weathered sediment particles when the catchment is covered by snow 

and thus, the amplitude and the duration of snow-cover signals, and (ii) the duration of the 

frozen period which may prevent sediment particles to enter the water body.  

Besides, the Siberian High itself may have an influence on the moisture transported from 

the Eastern Mediterranean region to western Central Asia during late winter and early spring. 

As reported by Panagiotopoulos et al. (2005), a stronger SH contributes to enhance 

cyclogenesis in the Mediterranean region (Fig. 1.3b). To some extent, this matches well with 

our results (Fig. 6.2), indicating that the increase in precipitation recorded during 400–700 

AD and 1300–1400 AD are coeval with a stronger SH. This is, however, not the case for the 

period 1150–1300 AD, where the intensity of the SH was extremely low concurring with 

higher mean annual temperatures in the region (Fig. 6.2). Conversely, the low temperatures 

during 1500–1980 AD may stem from persistent intensified SH during springs (Meeker and 

Mayewski, 2002) that would be associated to prolonged freezing conditions (see Fig. 1.4f), 

thus delaying the onset of warming in western Central Asia. 
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VI.2.2. External forcing 
 

Altough interactions between different climate systems primarily control environmental 

changes and determine climate conditions in western Central Asia at the short time run, we 

would expect external forcing mechanisms to have an influence, even weak, on climate and 

environmental change in this region. This chapter aims to investigate such relationships and to 

ultimately unravel the respective role and scope of both internal (climate dynamics) and 

external forcing mechanisms. 

Within the Aral Sea proper, the temporal changes of the water body volume are 

determined to a great part by the water budget components (i.e., evaporation, precipitation, 

river discharges and groundwater inflow), which are on their part subject to change as a 

function of the lake volume, thus constituting feedbacks (Zavialov, 2005). This primarily 

points to the role of the evaporation rates (averaging 100 cm/year with maximum values 

observed in August which exceed those of February by a factor of 10) which depend on the 

temperature, the air humidity and salinity properties of the lake (Zavialov, 2005). Hence 

evaporation rates are likely to have been modulated during periods of dessication of the Aral 

Sea, and might be regarded to some extent as a good indicator of solar insolation changes in 

the past. Though evaporation rates or even sea-surface temperature are difficult yet to 

quantify as we do not have suitable proxies for tracing these components, we can nevertheless 

use the salinity record based on dinoflagellate cyst assemblages to evaluate to some extent the 

impact of solar activity on the Aral Sea’s hydrological balance during the late Holocene. 

The comparison between our record of salinity change and different reconstructions of 

solar activity show a moderate correlation over the past millennium (Fig. 6.3). Overall, it can 

be observed that the periods of increased / high salinity as during 1000–1300 AD, 1450–1550 

and 1600–1700 AD coincide closely with periods of increased solar activity. However, no 

correlation is obvious during the intervening periods 1300–1450 AD and 1700–2000 AD 

when salinity levels are low and do not seem to be influenced by variations in solar activity. 

Hence the correspondence between the salinity record and the 10Be and δ14C solar intensity 

proxies is clearly more pronounced during periods of drastic salinity increase than during 

phases where salinity is low. This suggests non-linear relationships in which hydrological 

changes are more responsive to variation in solar activity (i.e. external forcing) when lake 

levels are low, indicating that an increase in the net radiative forcing may have amplify the 

lake shrinking during 1000–1300 AD and 1450–1700 AD. This agrees to some extent with 

results of Shermatov et al. (2004) based on an analysis of water resource variability in the 
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Aral Sea Basin who reported that maxima in solar activity coincided with low lake-levels 

during the past ca. 200 years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 6.3: Comparison of salinity change (blue curve) in the Aral Sea and temperature 
deviations (T°C, red curve) in the Aral Sea Basin with different reconstructions of solar 
activity during the past 1000 years. The three different reconstructions of solar activity are 
based on 10Be measurements (Bard et al., 1997) (black), 14C residuals (Stuiver and Braziunas, 
1993) (orange) and calculated 14C change based on 10Be variations (Bard et al., 2000) 
(green) (modified after Crowley (2000). Shadings represent correlation between the salinity 
record and solar activity during 1000–1300 AD, 1450–1550 and 1600–1700 AD. Dashed 
lines represent correlation lines between temperature deviations in the Aral Sea Basin and the 
solar activity. 

In other words, though climate dynamics primarily controlled salinity and lake level 

changes through variation in meltwater discharges, it is likely that solar activity played a 

significant role on the Aral Sea’s hydrological balance during periods of regressions over the 

past millennium. In contrast, during periods of higher lake levels, the hydrological balance of 

the lake was probably mostly determined by interactions and feedbacks between all active 

systems, whereas the impact of variations in solar activity was considerably weakened. 

Therefore, during intervals with higher precipitation averages, a coeval increase in air 

humidity would have lowered evaporation rates even when temperature is high, as during 

1300–1400 AD. On the basis of the correlation drawn for the time interval 1000–2000 AD, 

the prolonged regression recorded during ca. 0–400 AD suggests that the intensity of the 
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radiative forcing might have been higher at that time, judging from the salinity increase 

inferred by dinoflagellate cyst assemblages and archaeological findings. This is concurrent 

with the reconstruction of Solanki et al. (2004) based on sunspot numbers, who reported high 

levels of solar activity around 0 AD. 

 

In order to examinate how much external forcing is possible on terrestrial environmental 

change and climate variability we compare temperature deviations from mean annual values 

in the Aral Sea Basin (performed using the “probability mutual climatic spheres” method, 

Chapter IV) with variations in solar activity during the past 1000 years (Fig. 6.3). Although 

correlation is impossible between 1550 and 2000 AD due to the low-resolution of our 

reconstruction within this time interval, there is a rather good-match of long-term temperature 

variability in western Central Asia and the 10Be and δ14C solar intensity proxies during 1000–

1500 AD. However, this correlation is not unequivocal and it is obvious that offsets of about 

80 to 100 years are implied between the solar activity record and our temperature deviation 

curve, which are difficult to undertand yet. Nonetheless, it is likely that variation in solar 

activity act as a primary forcing mechanism of centennial temperature variability in western 

Central Asia at the beginning of the past millenium. We might expect this link to be more 

pronounced during summer when the radiative forcing is considerably enhanced in Central 

Asia (Fig. 1.4d) and result in a significant rise of air temperature (up to 52°C during July in 

the eastern Kara Kum (Lioubimtseva et al., 2005)). 
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Chapter VII: Concluding remarks 
 
 

Given the long and high-quality coring from the Aral Sea, this thesis, based on a 

multidisciplinary approach, provides for the first time the chance to document facts on past 

environmental and climate variability in western Central Asia during the late Holocene, at a 

high time-resolution. Though human activities (irrigation, military conflicts) are likely to have 

moderately influenced the hydrology in this region, environmental change is ultimately linked 

to climate variability which is predominantly controlled by interaction between different 

climate mechanisms. The Siberian High is the dominant spring feature controlling 

temperature gradients and wind dynamics in western Central Asia, thus influencing the 

intensity of detrital input blown by the storms. Besides, the Aral Sea Basin’s hydrological 

budget is basically regulated by the Westerlies and the Eastern Mediterranean cyclonic 

system. While the latter provides the moisture which falls as rain over Central Asia during 

late winter and early spring, the Westerlies are the main source of humidity to the montane 

regions (Tien Shan and Pamir) where melting glaciers and snowfields feed the Amu Darya 

and the Syr Darya rivers during the late spring and early summer season. In turn, the 

amplitude of the contribution in glacial meltwater inputs into the Aral Sea is largely 

controlled by temperature contrasts between the seasons in these montane regions, and has 

thus a primary impact on the Aral Sea’s lake levels. 

In addition, it is likely that external forcing has a significant imprint on environmental and 

climatic changes in this vast arid area. The solar activity’s increase during the Middle Age is 

likely to have driven elevated annual temperatures over Central Asia, thus casting new 

perspectives for future work. Moreover, compelling evidence shows that non-linear 

relationships exist between salinity levels and variation in solar activity when the hydrological 

balance is negative. Hence, a higher radiative forcing may have strengthened Aral Sea’s 

regressions in the past. A corollary pertinent to present-day concerns is that increased solar 

activity would amplify the modern regression, even if the lake level at the time of writing 

(30.24 m.a.s.l.; Zavialov, personal communication) has not reached yet the level of the Middle 

Age. 

 
Outlook 
This work provides ground truth data for modelling studies, which are required to broaden 

our understanding of the interactions which regulate the climatology of Central Asia. 
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Nonetheless, throughout this thesis, only a restricted number of these interactions have been 

evaluated, and the genuine role of dominant modes of climate variability such as the ENSO, 

the NAO or the AO is still confined to speculations. In order to improve the assessment of 

their respective impact on climate variability in Central Asia, further climate proxy data are 

required. Forthcoming analyses would consist in extracting new cores from different lakes in 

the montane regions with the aim to quantify the impact of the Westerlies transporting 

humidity through Eurasia on their hydrological balance. Future work would also deal with 

investigating the impact of the SW Indian summer monsoon over this region, even if its 

influence in the Aral Sea Basin is probably considerably weakened due to surrounding 

blocking mountain ranges (Létolle & Mainguet, 1993). 

Finally, it would be essential to extend the existing station data network and reanalyses of 

climate state variables in western Central Asia further back in time, which would allow to 

propose quantified spatial climate-field reconstructions for this region (Fig. 7.1). This would 

then offer the perspective to detect the main seasonal patterns of atmospheric variability over 

the region, to define climate regimes, and to identify other teleconnections with remote 

climate modes. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.1: Present-day 
atmospheric dynamics of 
different meteorological 
systems for winter and 
summer times in Central 
Asia (Kyrghysian 
Meteorological Station), 
though the influencing 
factors are not well 
understood yet. 
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