1.7. AGRICULTURAL CROP CAPACITY CHANGE DEPENDENCE ON WATER CONSUMPTION

1.7.1. Introduction^{*}

With regard to growth of ecological requirements and change of soil-hydrogeological and water-meliorative processes, caused by the water resources available shortage and exhaustion as well as under effect of antropogenic measures on environmental objects more restrictions of limited water use is required. From this point of view agricultural organizations activity, especially under preparation of water use schedules and reclamation measures on lands desalinization and their realization, should be supported by results of field research for agricultural crops biological demands, which differ depending on natural-economic and climatic conditions, sort and formation of dry mass (crop capacity) of agricultural crops.

It is known that the water necessary to cover plants water consumption (total evaporation and transpiration) in arid zone can be recharged only at the expense of natural sources (precipitation, overflow from groundwater). This water balance shortage is covered in artificial way – water supply to fields through agricultural crops irrigation which quantitative value constitutes plants biological demands for irrigation water.

Agricultural crops water consumption as well as plants requirement for water depend on many factors: climatic, hydrogeological-soil-meliorative conditions: soil fertility and soilswater feeding regime, agricultural crops verities and agro- and water-meliorative measures and other circumstances.

Numerous researches of agricultural crops water consumption, biological norms and irrigation regime during long time as on Central Asia area, so abroad, fixed certain dependence (conformities to natural laws) of their biomass and crop capacity change on water consumption. So different forms of crop yield relation with precipitation, soil moisture stock, irrigation norm and evaporation and agricultural crops transpiration were studied. These forms represent determination of dependence between crop yield and water balance positive components.

At the present moment there are different approaches to describe crop dependence on water consumption, of which determination of change (increase and reduction) of crop yield depending on water consumption growth is widely spread. By means of these researches it was determined for all agricultural crops dry biomass increase proportionally to water consumption growth and for majority of clean filled crops. Crop yield is connected proportionally with dry mass. Exception is for some industrial crops, in particular, cotton (dr. 2.1-2.6). The most wide-scaled researches of relation between crop yield and water consumption were conducted on wheat and maize. Equation determined relation between of crop yield and water consumption is represented in table 2.1.

This table shows that relation between yield of wheat, maize and even alfalfa and water consumption has linear character. Damage coefficient K is defined on equation of such type as

1 - Y (a)
$$K_1 [1 - (H_c/H_{0HT})]$$
 (3.1) or $1 - Y = K_2 [1 - (T_2/T_0)]$ (3.2)

for wheat it changes within 0.92-1.7. However for majority of regions its value is equal to 1.0-1.2.

In above equations:

^{*} Under preparation 2.1. V.Nasonov, Ph.D. materials were used

$$\mathbf{Y} = \mathbf{Y}/\mathbf{Y}_0 \qquad \qquad \mathbf{H} = \mathbf{H}_c/\mathbf{H}_{ont} \qquad (3.3)$$

where: Y – actual crop yield; Y_0 – potential crop yield; T_2 – transpiration corresponding to actual yield; T_0 – maximum transpiration corresponding to potential crop capacity; T_{opt} – optimal transpiration; K_1 and K_2 – sensibility coefficients.

According to FAO UNESCO damage coefficient **K** (crop yield reduction because of water consumption lack) under maize biomass formation is equal to 1.1-1.25, and for grain – 1.28-1.48. Damage coefficient for alfalfa according to experimental data 1.1 for Volga river basin conditions and 1.2 - for Kzyl-Orda oblast Toguzken massif conditions. Along with damage coefficient value for hydromorphous soil conditions is less than for authomorphous soils.

It worth to note that R.Gorbacheva determined non-linear relation between maize crop yield and water availability (water consumption), described by parabola (dr. 2.7 and 2.8) and equation for Kyrgyzstan Chu valley conditions and Almaty oblast of Kazakhstan:

$$Y/Y_{max} = a (K - K_0)^n - b (K - K_0)^m$$
 (3.4)

Damage coefficient K and yield dependability on water consumption

Location	Agricultu-	Regression	Maxin		К	Research data
	ral	equation	c/ha	m³/ha		
	crop		U	W		
			Wheat			
South-East Kazakhstan	summer wheat	U = 1.74W 0.7	<u>Wheat</u> 40.5	3810	17	V.Lim. /80/
		$U = 1.74W_c - 0.7$			1.7	
South Kazakhstan		$U = 1.36W_c - 0.36$	51.2	3385	1.36	Sh.Begishev /17/
Kulunda Steppe		U = 0.98W - 0.16	43	4700	0.98	S.Verigo, P.Razumova /25/
North Kazakhstan		U = 1.31W - 0.4	20	2500	1.3	
USA (Texas)	summer wheat	$U = 1.16W_c - 0.1$	30.0	5500	1.16	/163/
						S.Verigo, P.Razumova /25/
Volga side - Orenburg	summer wheat	U = 1.1W - 0.18	44	4700	1.1	
North Caucasus	winter wheat	U = 1.18W - 0.2	41	5500	1.18	A.Uskov, L.Pyatygin /135/
Novosibirsk	winter wheat	U = 0.92W - 0.08	33	3300	0.92	A.Uskov, L.Pyatygin /135/
Engels	winter wheat	U = 0.99W - 0.88	37.7	4714	1	A.Uskov, L.Pyatygin /135/
Lower Volga side	winter wheat	$U = 1.82W_c - 0.82$	80	4900	1.82	P.Kruzhilin /73/
			Maize	1900	1.02	
South Kazakhstan	dry mass	$U = 1.07 W_c - 0.1$	435.4	5845	1.07	Sh.Begishev /17/
Israel	dry mass	$U = 1.57 W_c - 0.57$	218	5440	1.58	/163/
USA (Colorado)	grain	$U = 1.06W_c - 0.06$	144.2	7650	1.06	/163/
srael	grain	$U = 2.06 W_c - 0.04$	108	5440	2.06	/163/
USA (Florida)	grain	$U = 4.04W_c - 3.73$	51.9	4200	2.00	/163/
			Lucerne			
South Kazakhstan	Lucerne for					
JUUII INAZANIISIAII	hay	U = 1.17W - 0.19	_	_	1.2	/163/
Lower Volga side	hay	U = 1.1W - 0.12	- 200	16000	1.2	/163/
e	5	er consumption deficit	200	10000	1.1	/103/

Note: K is damage coefficient from water consumption deficit.

Dr.2.1. Lucerne yield versus total evaporation (after Sh. Begishev).

Dr. 2.2. Maize dry mass versus water consumption (Toguzteren massif) (after Sh. Begishev).

Dr.2.3. Cotton yield versus cotton dry mass (after N. Starov, S. Rizhov, M. Mednis, S. Yuldashev, V. Novikov).

Dr. 2.4. Cotton dry mass yield versus water consumption (after N. Starov, S. Rizhov, L. Churyayev, E. Eremenko).

Dr.2.5. Soya been yield versus water consumption.

Dr. 2.6. Maize yield water consumption.

Dr. 2.7. Maize for grain yield versus water availability for Chu valley

In USA (S.Shih), Dagestan (Musayev), Rostov oblast, Russia (V.Kostyukov) in experiments on sorgo and grass irrigation defined linear dependence of crop yield versus water consumption for these crops (table 2.2). Damage coefficient changes because of water consumption lack within very wide limits 0.9-1.83 in USA conditions and 1.14-1.5 in Russia European part conditions.

Industrial crop - cotton - differs by other characteristics of reaction on water stress. For this crop under dry mass formation there is linear dependence between biomass and water consumption described by following equation (according to dr. 2.3):

$$\mathbf{Y}_{\rm dm} = \mathbf{0.01} \ \mathbf{M} - \mathbf{4.15} \tag{3.5}$$

Equation (3.5) can be expressed through the damage, then it will be the following:

$$1 - Y = 1.03 (1 - H)$$
(3.6)

At the same time there is non-linear relation between raw cotton crop yield and dry mass described by equation:

$$Y_0 = -0.009 Y_{dm}^2 + 2.15 Y_{dm} - 71.24$$
(3.7)

Similar relations were found for cotton abroad (S.Shih, USA) which differ only by coefficients.

1.7.2. Water consumption influence on agricultural crops capacity and irrigation water productivity

Data represented in Chapter 2.1 show close relation of agricultural crops capacity growth versus water consumption value. For majority of clean filled and forage crops specialists of Central Asia and abroad studied and determined linear dependence between crop capacity growth and water consumption, although there are some published works on maize where non-linear dependence between them is described. Regarding industrial crops, in particular cotton, this dependence is described by parabola equation of the second power – that is explained by faster coming of phases of "obesity", i. e. intensified growth of biomass and crop yield ripening backward, on this crop after certain water consumption value. Regarding other crops there was no this limit of crop capacity growth depending on water consumption. On the other hand, agricultural crops capacity is multi-factor process and therefore it is impossible to obtain regularity of its change not only for all crops, but for one specie of crops. Results of agricultural crops capacity change field researches on pilot projects of irrigation regime and water consumption norms are considered below.

1.7.2.1. Changes of cotton crop capacity and irrigation water productivity in dependence on water consumption

Information of cotton crop capacity changes depending on water consumption norms is represented on 7 pilot projects, 3 of which were fulfilled in the Republic of Tadjikistan and 4 - in the Republic of Uzbekistan.

Damage coefficient K dependability on sorgo-sudan grass water consumption with regard for its yield

Location	Yield	Regression equation		m values	К	Research data
	type	in relative units	yield	water con- sumption		
			c/ha	m ³ /ha		
Dagestan	grain	U = 1.19W- 0.19	39.8	5252	1.14	M.Musayev /89/
Rostov province	green mass of sorgo- sudan gibride					
	sudan gioriae	U = 1.5W - 0.5	835	5762	1.5	V.Kostyukov /70/
USA (Nebraska)	grain	U = 1.1W-0.1	72		1.10	/170/
USA (California)	grain	U = 0.86W + 0.05	99.4	5870	0.9	/170/
USA (Colorado)	grain	U = 1.06W - 0.19	84.5	4290	1.06	/170/
USA (Alabama)	sudan grain,					
	dry mass	U = 1.87W + 0.17	139.2	120	1.83	/170/

Plots of the Republic of Tadjikistan are situated on authomorphous non-saline soils. Of 4 pilot plots of the Republic of Uzbekistan -3 ones are placed in conditions of halfautomorphous soils, represented by saline grounds and 1 plot (NISTO -1.01 Uz) under automorphous conditions. Data obtained by SPA SANIIRI and KKNIIZ and study of cotton irrigation regime are attracted during data analysis.

Processed data of cotton crop capacity growth versus water consumption represented at dr. 2.9 show that crop yield change is dependent not only on water consumption, but on natural-economic conditions too as well. So, under conditions of authomorphous soil maximum cotton crop capacity within 55-58 c/ha is obtained on thick dark grey soils, which are rich with humus under water consumption about 6800-7500 cu. m/ha, while on stony grounds of low thickness under similar water consumption values 35 c/ha is obtained. At the same time on thick light grey soils of Tashkent rayon (EPP UNIIH and NISTO SPA SANIIRI) which are poor with natural humus, maximum crop capacity varies within 39-48 c/ha under irrigation norms near 7.0 th. cu. m/ha (water consumption -7.8-8.0 th. cu. m/ha).

On saline half-automorphous soils of Karshi and Hungry steppes maximum cotton crop capacity within 32-34 c/ha is obtained under water consumption value appropriately 9000-9500 and 7800-8000 cu. m/ha. At the same time, on saline hydromorphous soils of Khorezm oblast (OPX SANIIRI and OPH KKNIIZ) maximum cotton crop capacity within 35-36 c/ha is grown under water consumption 7000-7200 cu. m/ha, of which 30-35 % are formed at the expense of groundwater use and 8-10 % of soil moisture stock.

Data processed as curves of dependence of actual cotton crop capacity change versus water consumption represented at dr. 2.10, 2.12 and 2.14 with regard to automorphous, hydromorphous and half-automorphous soils formation, show non-linear relation between cotton crop yield and water consumption. So, in automorphous regime conditions cotton crop yield growth is observed up to 60 c/ha for dark grey soils, rich with humus, and up to 50 c/ha for light grey soils, under water consumption value 7000-8000 cu. m/ha.

Water consumption norms' increase above pointed out figures causes cotton crop capacity reduction, that is explained by aggravation of water-aerial conditions of biomass formation and fruits ripening backward.

The same situation is noted in half-automorphous soil conditions (dr. 2.14). In this case maximum crop capacity equaled to 45-50 c/ha is obtained under water consumption 7-8 th. cu. m/ha as well, exceeding of which causes productivity reduction. There is different process of cotton crop capacity growth depending on water consumption. Here relation between cotton crop yield and water consumption is close to linear one. In these conditions the highest limit of crop capacity growth has not been obtained by means of experiments, depending on water consumption, after which crop capacity reduction is observed. On the other hand, in hydromorphous soil conditions water "stress" is not sensible for agricultural crops, as plants are permanently recharged from groundwater. Share of groundwater recharge, use of soil moisture and precipitation stock in hydromorphous soil conditions are 45-55 % in total water consumption, while cotton demand for water is covered at the expense of water supply. Otherwise, in hydromorphous and half-automorphous soil conditions in formation of soil water availability (water consumption) groundwater level and regime have a big importance.

Processed vast material, collected by Central Asian scientific-research institutes, allowed to define for different intervals of groundwater depths close relation between relative cotton crop capacity and irrigation norm. Given relation could be represented as parabolic dependence of the second power:

$$Y/Y_{max} = b (M/M_{opt}) + a (M/M_{opt})^{2} - c$$

where: $\mathbf{Y}, \mathbf{Y}_{max}$ – appropriately actual and potential optimal crop yield;

 M, M_{opt} – appropriately actual and optimal irrigation norms.

 $M = M/M_{opt}$

Dr.2.9. Relative cotton yield versus water consumption.

maximum yield in experiments, Ymax= 35 - 58 c/ha

Legend

$$\begin{array}{l} Pecn. Rapaka pnake man \\ Pecn. Rapaka pnake man \\ P = 7.6 mode. M^{2}a, & Ymax = (32-354/2a) \\ -w-2 - Xapesme. abn. (DIX CAHMAPA) & Dp = 7.2 tole. M^{3}2a, & Ymax = (35-36u, /2a) \\ -x-4 - Kapuu (9 u 24 cob) & Op = 9.5 tole. M^{3}2a, & Ymax = (32-34 u, /2a) \\ -v-5 - Tauk. abn. (93 HMAX) & Dp = 7.0 tole. M^{3}2a, & Ymax = (39-48 u, /2a) \\ -•-7 - Colpd. abn. (r. Tynsm) & Dp = 8.0 tole. M^{3}2a, & Ymax = 32 u, /2a \\ -\Delta-8 - Tauk. abn. (HMCTO) & Dp = 6.4 tole. M^{3}2a, & Ymax = 31 u, /2a \\ -\Delta-9 - Xapesme. abn. (BHY. Xan) & Dp = 5.5 tole. M^{3}2a, & Ymax = 44 u, /2a \\ -o-10 - Rehumabader. abn. (Tadm) & Dp = 7.1 tole. M^{3}2a, & Ymax = 35 u, /2a \\ -\Delta-11 - Tuecapek. p-H (Tadm.) & Dp = 7.2 tole. M^{3}2a, & Ymax = 58 u, /2a \end{array}$$

Dr. 2.11. Irrigation water productivity versus cotton water consumption.

n

Dr. 2.12. Cotton yield versus water consumption norm on hydromorphous soils.

Dr. 2.13. Irrigation water productivity versus cotton water consumption on hydromorphous soils (ground water table 0,5-2,0 m).

Equation parameters under different groundwater table are given below in table 2.3.

TD 1 1		\mathbf{a}	\mathbf{a}
Lab	P	1	- 4
1 uU	LU.	4	.)

Depth		Regr	ession coeff	icient	Correlation
range,	$Y/Y_{max} = f(M_i/M_{opt})$	a	b	c	coefficient
m					
0.5-1.0	$Y = -0.808M^2 + 1.86M - 0.0267$	0.808	1.861	0.0267	0.92
					<u>+</u> 0.01
1.0-2.0	$Y = -1.0716M^2 + 2.245M - 0.165$	1.0716	2.245	0.165	0.93
					<u>+</u> 0.01
2.0-3.0	$Y = -1.438M^2 + 2.981M - 0.528$	1.438	2.981	0.528	0.91
					<u>+</u> 0.01
> 3.0	$Y = -2.13M^2 + 3.971M - 0.858$	2.13	3.971	0.858	0.90
					<u>+</u> 0.01
0.0-3.0	$Y = -0.582M^2 + 1.67M - 0.0913$	0.522	1.674	0.0613	0.88
					<u>+</u> 0.3

Given relation may be used during schedule calculations of cotton water consumption norms taking into account covering of cotton demand for water and groundwater table (GWT). GWT itself is the result of non-growing and growing periods irrigation, because GWT increases at once after one irrigation.

On the other hand, comparison of water consumption values, obtained during experiments on irrigation regime in Central Asia, with similar ones obtained by FAO, shows that actual values of cotton total evaporation for all conditions of soil formation are within demand for water limits according to FAO or lower. So, on FAO recommendation, to obtain 35-50 c/ha of cotton crop yield in hydromorphous soil conditions and 45-50 c/ha and more in automorphous ones water consumption within 7000-13000 cu. m/ha is supposed. With regard to cotton irrigation regime experiments to achieve pointed out values of crop yield moisture, discharge per total evaporation does not exceed 7000-8000 cu. m/ha. Within limits recommended by FAO cotton demand for water 7000-13000 cu. m/ha is estimated as effectively used irrigation water, while cotton 1 kg yield growing takes 0.4-0.6 cu. m of water. From this point of view during all cotton irrigation regime experiments, conducted in Central Asia, effective use of irrigation water was obtained (table 2.4, dr. 2.11, 2.13 and 2.15). So, in optimal options of irrigation irrigation water productivity changes within 0.4-0.7 kg/cu. m, i. e. is within limits recommended by FAO.

So, data analysis represented at dr. 2.10-2.15 and tables 2.4, 2.5 show that certain water consumption value corresponds to each level of crop capacity. Otherwise there is exact "limit" of cotton crop capacity growth depending on water consumption volume, above which sharp reduction of crop yield or negligible "increment" per "unit" of total evaporation (tables 2.4 and 2.5).

Table 2.4

Assessment of irrigation water use productivity

Pilot plot index	Soil- climatic	Water allowance	Salinity degree	Ground- water	Agricul- tural	Informa- tion	during g	nsumption rowing pe-	Limits of water consumption	Actual water consumption or ex-	Yield		vater productivency), kg/m3	vity
	zone	rayon		table, m	crop	type	total	er., m3/ha at expen-	(after FAO) m3/ha	ceeding or arriers compared	kg/ha	after FAO	actual	exceed-
					r	• J F •								ing
								ses of		with FAO			12:8	FAO
								water		(m3/ha)				%
1	2	3	4	5	6	7	8	consum.	10	(%) 11	12	13	14	15
1	2	5	•	5	Ū	,	0	,	10	11	12	15	11	15
1.01. Uz.	Ц-П-В	Ш	NS	5	cotton	ОП	9080	7275	7000 - 13000	-1920 (19)	3100	0.4 - 0.6	0.35	-20
						К	9575	7500	7000 - 13000	-425 (4.2)	2600	0.4 - 0.6	0.3	-40
1.02. Uz.	Ц-П-Б	1У-У	MS	1.5-3	cotton	ОП	8170	4000	7000 - 13000	-5100 (51)	3200	0.4 - 0.6	0.6	20
						К	7830	4700	7000 - 13000	-5300 (53)	2600	0.4 - 0.6	0.3	-4
1.06. Uz.	Ц-1-А	У1-УП	MS	0.5-1.5	cotton	ОП	5370	4081	7000 - 13000	-4302 (43)	4430	0.4 - 0.6	0.6	4
						К	5618	4275.3	7000 - 13000	-4302 (43)	3550	0.4 - 0.6	0.6	2
1.08. Uz.	Ю-1-Б	1У	MS	2-3	cotton	ОП	9350	8050	7000 - 13000	-1950 (19.5)	2800	0.4 - 0.6	0.3	-4
1.01. Tad.	Ю-П-Б	Ш	NS	10	cotton	ОП	10653	10415	7000 - 13000	415 (4.15	4270	0.4 - 0.6	0.4	-2
						К	9791	9321	7000 - 13000	-679 (6.8)	3340	0.4 - 0.6	0.3	-4
1.04. Tad.	Ц-П-А	Ш	NS	5	cotton	ОП	6821	6260	7000 - 13000	-3740 (37.4)	8520	0.4 - 0.6	0.5	0
						К	8556	8213.7	7000 - 13000	-1786 (17.8)	3230	0.4-0.6	0.4	-2
1.06. Tad.	Ю-1-Г	Ш	NS	10	cotton	ОП	6584		7000 - 13000	-3416 (34.1)	5800	0.4 - 0.6	0.9	80
						К	7349		7000 - 13000	-2651 (26.5)	4870	0.4 - 0.6	0.66	3
Exp. base	Ц-1-А	1У	WS	1.5-2.0	cotton	ОП	6780	2361	7000 - 13000	-3220	3640	0.4 - 0.6	0.53	6
KKNIIZ			MS											
_^	Ц-1-А	1У	WS, MS	1.5-2.0	cotton	ОП	6270	2651	7000 - 13000	-3730	3200	0.4 - 0.6	0.51	1
''	Ц-1-А	1У	WS, MS	1.5-2.2	cotton	ОП	5820	1924	7000 - 13000	-4180	2940	0.4 - 0.6	0.5	0

Legende: NS - non-saline; WS - weakly saline; MS - medium saline.

Cotton and cotton field water consumption versus its yield and irrigation technique efficiency

Cotton	Average	Water con	nsumption	(m3/ha) at	-	Mnet	Irrigation	Mgross	M for	М		Perspective			
yield, C/ha	water		expense of		coeffi- cient	for	tech-	for	non-	annual	Irrigation	М	M		
C/IId	consump tion,	precipi-	soil mois-	ground-	K	vegeta- tion	nique effi-	vegeta- tion	vegeta- tion		tech-	vegeta-	annual		
	tion,	tation	ture use	water use	К	uon	ciency	tion	tion		nique effi-	tion			
	m3/ha		before	use			cicity				ciency				
	11107110		1st								xxxx)				
			irrigation								mmy				
1	2	3	4	5	6	7	8	9	10	11	12	13	14		
			Auto	norphous r	egime Lov	v thickness	s top soil, u	nderlaid by	nebble and	lsand					
			Tuto	norphousi	egnine. Lov	v unexnest	, top 5011, u	indernand by	people and	Juna					
25-30	5700	600^{xx}	-	-	1	5100	0.55	9350	$500^{xxx} +$	10350	0.85	6000	7000		
20-25	5200	_''_	-	-	1	4800	_''_	8750	500+500	9750	0.85	5670	6670		
			Automo	orphous reg	gime. Light	loamy soi	ls, thickness	s 1.5-2.0 m	underlaid	by sand					
35-40	7500	500	1050	-	1	5450	0.65	8400	900	9300	0.75	7300	8200		
30-35	6200	_''_	_''_	-	1	4150	_''_	6400	_''_	7300	_''_	5530	6430		
25-30	5700	_'''_	_''_	-	1	3650	_''_	5600	_''_	6500	_''_	4800	5780		
20-25	5200	_''_	_''_	-	1	3150	_''_	4850	_''_	5750	_''_	4200	5100		
		1	Automorph	ous regime	. Non-salin	e big thick	ness loamy	deposits. I	water allow	vance rayo	on				
40-50	8500	350	1650	260	1	6240	0.70	8900	700	9600	0.75	8320	9020		
35-40	6800	_"_	_''_	_''_	1	4500	_''_	6500 ^{x)}	_''_	7200	0.75	6040	6740		
30-35	6200	_''_	_''_	_''_	1	3940	_''_	5640	_''_	6340	_''_	5250	6950		
25-30	5700	_''_	_''_	_''_	1	3440	_''_	4920	_''_	5620	_''_	4600	5300		
20-25	5200	_''_	_''_	_''_	1	2980	_''_	4280	800	5080	_''_	3950	4750		

1	2	3	4	5	6	7	8	9	10	11	12	13	14
			Half-a	utomorpho	us regime	Non-saline	loamy soi	ls. IV water	r allowance	e ravon			
			11a11-a	utomorpho	us regime.	11011-Salline	ioaniy soi	15. 1 V water		layon			
40-48	8200	300	1600	650	1	5650	0/75	7580	700	8280	0.80	7050	7750
35-40	6900	_''_	_''_	_''_	1	4350	_'''_	5800	_''_	6850	_''_	5450	6150
30-35	6250	_''_	_''_	_''_	1	3700	_''_	5000	_''_	5700	_''_	4630	5330
25-30	5700	_''_	_''_	_''_	1	3150	_''_	4230	_''_	4930	_''_	3950	4650
20-25	5200	_''_	_''_	_''-	1	2800	_''_	3750	800	4550	_''_	3500	4300
		Hydromo	mhous regi	ne Meado	w and mars	shv-meadov	w soils VI	water allow	vance ravo	n. Weakly s	saline soils		
		11) u onio	.p.10 00 1081						, u 1100 1 u j 0				
45-50	8700	250	1500	1000	1	5950	0.80	7400	2000	9400	0.85	7030	9030
4045	7750	_''_	_''_	_''_	1.05	5250	_''_	6600	_''_	8600	_''_	6170	8170
35-40	6750	_''_	_''_	_''_	1.10	4400	_''_	5500	_''_	7500	_''_	5180	7180
30-35	6200	_''_	_''_	_''_	1.15	3980	_'''_	5000	_''_	7000	_''_	4680	6680
25-30	5700	_''_	_''_	_''_	1.20	3560	_''_	4480	2500	6980	_''_	4200	6700
			Hydromor	hous regin	ne. Meadov	w and mars	hy -meado	w soils. Sal	ine in diffe	erent degree	;		
				-						-			
45-50	8700	200	1200	1790	1.15	6300	0.84	7550	4000	11550	0.85	7400	11400
4045	7750	_''_	_''_	_''_	1.20	5500	_''_	6550	_''_	10550	_''_	6480	10480
35-40	6750	_''_	_''_	_''_	1.25	4050	_''_	5470	_''_	9470	_''_	5410	9410
30-35	6200	_'''_	_^	_''_	1.30	3960	_''_	4740	_''_	8740	_''_	4650	8650
25-30	5700	_''_	_^^_	_''_	1.35	3430	_''_	4100	_''_	8100	_''_	4030	8030
20-25	5150	_''_	_''_	_''_	1.40	2780	_''_	3300	4500	7800	_''_	3260	7760

<u>Notes</u>: ^{δ} - only for saline and subjected to salinization soils; ^{$\delta\delta$} - precipitation of 75 % availability (April, May); ^{$\delta\delta\delta\delta$} - pre-ploughing, pre-sowing and pre-sporuting irrigations; ^{$\delta\delta\delta\delta\delta$} - it means sprinkler irrigation introduction.

1.7.3. Wheat and barley crops capacity change depending on water consumption norms

With regard to these crops on 5 pilot projects (experimental plots) is represented in IPTRID register, on one of which – in the collective farm named after Karl Marx of Gissar rayon of Tadjikistan (1.05 Tad) barley was grown. Of 5 plots – 2 plots 1.04 Uz and 1.08 Uz belong to the Republic of Uzbekistan and 3 plots – to the Republic of Tadjikistan. With regard to environmental conditions 4 pilot plots are placed within automorphous and 1 – half-automorphous soils.

Irrigation regime of industrial and other kinds of clean filled crops differ from wheat and barley irrigation regime. Vegetation period irrigation wheat and barley are carried out in autumn-winter and, especially, spring periods of the year, when precipitation is high and water discharge per total evaporation is minimum because of low temperatures and high air humidity. Processing of information on wheat and barley winter crops show strict connection between their crop yield and water consumption, which is described by parabola of the second power, but not by linear dependence. Under this crop capacity level (50 c/ha) there is a proportional growth of crop yield versus water consumption above which crop yield increment reduction is noted. At the same time relatively high wheat crop yields within 40-60 c/ha are grown under optimal irrigation regime options near 70x70x60 and 70x70x70 of full field water capacity (FFC), under which water consumption varied within 4500-6500 cu. m/ha (dr. 2.16). Of general water consumption within 4500-6500 cu. m/ha water supply is 2500-4500 cu. m/ha and precipitation and soil moisture cover the rest.

Irrigation water productivity varies within wide limits 0.4-1.0 kg/cu. m of water. At the same time according to FAO limit of irrigation water use could be considered as effective, if productivity is within 0.8-1.0 kg/cu. m and water consumption value is within 4500-6500 cu. m/ha. Comparison of experimental data with FAO requirements shows that in optimal options of irrigation regime with keeping pre-irrigation soil moisture 70x70x70 of FFC irrigation water productivity is within 0.8-1.0 kg/cu. m (table 2.6), i. e. FAO requirement is kept (dr. 2.17).

1.7.4. Maize crop capacity change in dependence on water consumption norms

The most full information concerning maize for grain and dry mass crop capacity changes are represented on 5 pilot projects (over the Republic of Tadjikistan – 3 objects, and over the Republic of Uzbekistan – 2 ones). Over the Kyrgyz Republic incomplete information is presented as schedules of relation between actual crop yield and water consumption, as well as between relative crop capacity value and water consumption (water availability). During data processing curve of relation between actual crop yield and water consumption, obtained on Kyrgyzstan data, was supplemented with data of pilot projects over Tadjikistan objects – 1.05 Tad and 1.02 Tad, and over Uzbekistan – 1.04 Uz (dr. 2.18 and 2.19). Further information on 5 pilot projects of register was processed with attraction of field researches data, obtained on pilot plots of irrigation regime of maize for grain of Karakalpak Scientific-Research Institute of Cotton-Growing (UzNIIH). According to R.Gorbacheva (Kyrgyzstan) investigations relation

Pilot plot index	Soil- climatic	Water allo- wance	Salinity degree	Grou ndwa	Agricul tural	Informa tion		onsumpti g veg. per.	Water consumption			Irrigation water productivity		
	zone	wallee		ter	crop	type	m.	3/ha	limits after	exceeding		(efficie	ency), kg/	m3
		rayon		table,	_		total	incl. at	FAO	or arriers to		after	actual	FAO
				m				expense	(average),	compare with		FAO		exceed
								of water supply	m3/ha	FAO (average)				ing %
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1.05. Tad.	Ю-П-Г	Ш	non-	10	winter	ОП	3848	1110	4500-6500	-1752(32)	4450	0.8-1.0	1.1	122
			saline		barley	К	3901	1375	4500-6500	-2000(36)	3410	0.8-1.0	1.0	111
1.04. Uz.	Ц-П-В	Ш	non-	5-10	winter	ОП	6500	3650	4500-6500		5830	0.8-1.0	11.0	117
			saline		wheat	К	7768	4090	4500-6500	2268(42)	4840	0.8-1.0	0.62	-132
1.03. Tad.	Ц-П-Б	Ш	non-	5	_''_	ОП	4885	2090	4500-6500	-615(11)	4210	0.8-1.0	0.9	0
			saline			К	6046	2952	4500-6500	596(8.4)	1900	0.8-1.0	0.3	-70
1.05. Tad.	Ю-1-Г	Ш	non-	10	_''_	ОП	4492	1922	4500-6500	-1008(18.3)	4320	0.8-1.0	0.96	106
			saline			К	5070	2065	4500-6500	-430(7.8)	3800	0.8-1.0	0.7	-123
1.08. Uz.	Ц-П-А	1У	medium	2-3	_''_	ОП	3286	2753	4500-6500	-2215(40.2)	5900	0.8-1.0	1.8	200
			saline			К	4500	3720	4500-6500	-1000(18)	4820	0.8-1.0	1.1	122

Assessment of irrigation water use efficiency for winter wheat and winter barley

Dr. 2.17. Winter wheat productivity versus water consumption in zone of automorphous soils.

Dr. 2.18. Maize for grain yield versus water availability (water consumption).

Dr. 2.19. Maise for grain yield versus water availability in relative units.

between crop yield and water consumption is described by non-linear dependence (parabola of the second power) as equation (3.4) (dr. 2.18 and 2.19). Maximum maize for grain crop capacity within 80-100 c/ha was obtained under water consumption within 7500-9000 cu. m/ha (dr. 2.18), that corresponds to optimal pre-irrigation soil moisture for this crop 80x80x80 of FFC. At the same time on grey soils of the Republic of Uzbekistan and the Republic of Tadjikistan under optimal pre-irrigation soil moisture 80x80x70 crop capacity changed within 90-110 c/ha, and water consumption was equal to 6500-7400 cu. m/ha (dr. 2.18). Of this water consumption volume water supply is 75-80 % in automorphous soil conditions and 40-50 % in hydromorphous soil conditions. Comparing actual norms of water consumption of maize for grain with similar ones according to FAO, it is clear that in Central Asian conditions under optimal irrigation regime high yields of this crop may be grown under total evaporation values, which are lower than FAO limits. So, under maize for grain crop capacity equaled to 90-110 c/ha in experiments of the Republic of Uzbekistan and the Republic of Tadjikistan water consumption value 5000-7400 cu. m/ha was obtained, while according to FAO it is enough 5000-8000 cu. m/ha. At the same time on all Central Asian pilot plots on irrigation regime of maize for grain the highest productivity was achieved under optimal preirrigation soil moisture of FFC of irrigation water. Irrigation water productivity on pilot projects and experimental plots of KKNIIZ and UzNIIH branches changed within 1.0-1.98 kg/cu. m, while according to FAO estimation of water use effectiveness limit productivity is equal to 0.8-1.6 kg/cu. m (table 2.7, dr. 2.20). In experiments, even on lands, which are subjected to salinization, irrigation water productivity turned out high and equal to 1.2-1.9 kg/cu. m.

1.7.5. Changes of rice crop capacity in dependence of water consumption

Rice development physiology sharply differs from other agricultural crops. Wateraerial, nutrient exchange and vegetation regime of rice crop proceed in permanently flooded surrounding. In connection with that rice water consumption by 2-2.5 times higher than cotton, maize and other clean filled crops. With regard to IPTRID register information rice water consumption is from 40 to 50 % of water supply to the field and changes within 7250 (1.02 Kaz) – 14600 cu. m/ha (1.09 Uzb), and water supply to the field on these plots is appropriately equal to 26000 and 31000 cu. m/ha.

According to KazNIIVH data of total water consumption volume transpiration is 30-45 % and changes within 3200-7500 cu. m/ha (table 2.8).

Processing of data on rice did not allow to determine certain conformity to laws of relation between water consumption and crop yield. High crop yield of rice near 60-62 c/ha corresponds to water consumption level 13626 cu. m/ha and 8950 cu. m/ha, and crop yield 45-50 c/ha appropriately to 7250 and 11052 cu. m/ha. The lowest crop yield (32.3 and 37.4 c/ha) was achieved under water consumption value 14600-14000 cu. m/ha.

At the same time balance researches in connection with rice yield change in Central Asia, Krasnodar region and Japan determined close relation between rice crop yield growth and vertical filtration rate, which is described by equation:

$$Y = a_1 + b_1 V + c_1 V^2 + d_1 V^3$$
(3.8)

where: $\mathbf{a}_1, \mathbf{b}_1, \mathbf{c}_1, \mathbf{d}_1$ – empirical coefficients;

Assessment of irrigation wate	r use etticiency under maize
Assessment of inigation wat	

Pilot plot index	Soil- climatic zone	Water allo wance	Salinity degree	Grou ndwa ter	Agricul tural crop	Informa tion type	on du	consumpti ring veg. m3/ha	Water consumption limits after	Water consumption exceeding	Yield, kg/ha	Irrigatio produc (efficienc	ctivity
		rayon		table, m			total	incl. at expense of water supply	FAO (average), m3/ha	or arriers to compare with FAO (average)		after FAO	actual
1.04. Uz.	Ц-П-В	III	NS	10	maize for	ОП	4800	3600	5000-8000	-700(9)	9516	0.8-1.6	1.98
					grain	К	5200	4000	5000-8000	-300(4.0)	6713	0.8-1.6	1.3
1.05. Tad.	Ю-П-Г	III	NS	5	_''_	ОП К	4254 4333	4275 3262	5000-8000 5000-8000	-1275(17.2) -2238(29.8)		0.8-1.6 0.8-1.6	1.6 1.34
1.02. Tad.	Ю-П-Б	III	NS	5-10	_''_	ОП К	7414 6345	6057 6087	5000-8000 5000-8000	-86(1.1) -1455(15.4)	10500 6300	0.8-1.6 0.8-1.6	1.4 0.99
1.02. Tad.	Ю-П-Б	III	NS	5	_''_	ОП К	7414 6345	5654 4416	5000-8000 5000-8000	-86(1.2) -1155(15.4)	7600 4670	0.8-1.6 0.8-1.6	1.02 0.74
Exp. base KKNIIZ	Ц-1-А	IV	WS	1.5- 2.0	maize	ОП	7550	3418	5000-8000	-	8940	0.8-1.6	1.18
Exp. base KKNIIZ	Ц-1-А	IV	WS	1.5- 2.0	_''_	ОП	6370	2504	5000-8000	-	9360	0.8-1.6	1.45
Kashkadarya branch	Ю-1-Б		WS		_''_	ОП	7000	5400	5000-8000	-	8450	0.8-1.6	1.2
UzNIIHL Kashkadarya branch		II	WS	2-2.3	ВИР maize for	ОП ОП	7100 6100	5110 4350	5000-8000 5000-8000	-	9140 7810	0.8-1.6 0.8-1.6	1.9 1.8
UzNIIHL Note: NS - non-saline	Ю-1-Б e, WS - sli	ghtly	WS	2-2-3	grain	ОП	7370	5360	5000-8000	-	8660	0.8-1.6	1.6

Assessment of irrigation	water use efficiency under rice
1 15505551110110 OF HITIGATION	water use entitlenely ander mee

Pilot plot index	Soil- climatic zone	Water allo wance	Salinity degree	Grou ndwa ter	Informa tion type	on duri	onsumpti ing veg. m3/ha	Water consumption limits after	Water consumption exceeding	Yield, kg/ha	Irrigation product (efficiency	ivity
		rayon		table, m		total	incl. at exp. of water supply	FAO (average), m3/ha	or arriers to compare with FAO (average)	-	after FAO	actual
1.02. Kaz.	С-П-А	У1	NS	1-2.5	ОП К	7250 8250	26000 28160	3500-7000 3500-7000		4516 4016	0.7-1.1 0.7-1.1	0.62 0.48
1.03. Kaz.	С-П-А	У1	MS	1-3	ОП К	9750 10500	25000 23000	3500-7000 3500-7000		2750 1800	0.7-1.1 0.7-1.1	0.28 0.17
1.04. Kaz.	Ц-1-А	1У	MS	1-2.5	ОП К	13626 11052	24596 20605	3500-7000 3500-7000		6200 5000	0.7-1.1 0.7-1.1	0.45 0.45
1.05. Kaz.	Ц-1-А	1У	MS	1-2.5	ОП К	8950 10700	21672 20605	3500-7000 3500-7000		6000 5000	0.7-1.1 0.7-1.1	0.67 0.46
1.08. Kaz.	C-1-A	УП	MS	1-3	ОП К	9750 10344	20620 29820	3500-7000 3500-7000		4800 4390	0.7-1.1 0.7-1.1	0.49 0.41
1.09. Uz.	Ц-П-Б	У1	MS	0.5- 2.0	ОП К	12800 13900	21700 30900	3500-7000 3500-7000		4740 4000	0.7-1.1 0.7-1.1	0.37 0.28
1.09. Uz.	Ц-П-Б	У1	MS	0.5-2	ОП К	12350 14000	18862 29700	3500-7000 3500-7000		4880 3740	0.7-1.1 0.7-1.1	0.40 0.26
1.09. Uz.	Ц-П-Б	У1	MS	0.5-2	ОП К	12870 14600	18261 31650	3500-7000 3500-7000		4330 3230	0.7-1.1 0.7-1.1	0.36 0.22

Note: NS - non-saline, WS - medium saline

Dr. 2.20. Irrigation water productivity versus maize for grain water consumption.

 $\mathbf{Y} = \mathbf{Y}_{i} / \mathbf{Y}_{max}$ – relative crop capacity;

 $V = V_i/V_{opt}$ – relative vertical filtration;

where: Y_{max} , V_{opt} – maximum crop capacity and filtration corresponding to it.

Value of empirical coefficients, defining rice crop capacity dependence on filtration rate

No.	Object title				
		a ₁	b ₁	c ₁	d ₁
1	Central Asia and South Kazakhstan	0.337	1.17	-0.583	0.018
2	Krasnodar region	0.67	0.623	-0.371	0.0604
3	Japan	0.746	0.587	-0.404	0.0698

For these three continents which sharply differ by natural conditions and rice growing technology, this crop capacity, vertical filtration rate are characterized by 3 curves (dr. 2.21).

However, for SyrDarya lower reaches conditions crop yield growth depending on filtration rate is described by non-linear dependence such as:

$$Y = 4.20 + 0.48 F - 0.03 F2$$
(3.9)
K = 0.72

where: **F** – vertical filtration rate, mm/day.

The highest rice crop capacity near 58-62 c/ha corresponds to vertical filtration value 8-12 mm/day (dr. 2.22).

Other rice crop capacity dependence on groundwater table was determined for the South Ukraine conditions (dr. 2.23 - curve 1), Krasnodar region (dr. 2.23 - curve 2) and Central Asia (dr. 2.23 - curve 3).

Meanwhile, over all pilot plots irrigation water productivity on rice fields is lower than FAO criteria lower limit and varies within 0.22 kg/cu. m up to 0.67-0.7 kg/cu. m, while according to FAO it is effective, if water productivity varies within 0.7-1.1 kg/cu. m (table 2.8). In order to obtain this productivity limits according to FAO water consumption near 3500-7000 cu. m/ha is enough. Given FAO water consumption volume is too reduced. If they are counted as share of transpiration, so everything turns understandable. Then almost on all pilot projects on rice in Central Asia under optimal irrigation regimes high irrigation water productivity 0.7-1.7 kg/cu. m is obtained, what is some more than on FAO criteria (dr. 2.24 and 2.25).

1.7.6. Alfalfa crop capacity changes depending on water consumption

IPTRID registers, concerning alfalfa water consumption, are represented in three pilot projects: over Kazakhstan, located in SyrDarya river lower reaches (1.01 Kaz, 1.02 Kaz and 1.03 Kaz). All pilot plots are represented by shallow groundwater table and soils subjected to salinization. During information processing UzNIIH Khorezm Branch and KKNIIZ additional data was attracted corresponding to above-mentioned natural conditions for Kazakhstan pilot plots. Beside that, alfalfa irrigation regime data over Pakhtaaral state farm were used. Result of data processing are represented in table 2.9 and at dr. 2.26, which characterize existence of crop capacity regularity change in dependence on water consumption.

Dr.2.23. Rice yield versus ground water table during growing period.

- 1. South Ukrane;
- 2. Krasnodar province;
- 3. Central Asia and the Republic Kazakhstan;
 - $\mathcal{Y}''= \alpha'' + \mathcal{B}'' \mathcal{H} + \mathcal{C}'' \mathcal{H}^2 + \mathcal{A}'' \mathcal{H}^3$ $\mathcal{Y}'', \mathcal{B}, \mathcal{C}, \mathcal{A}'' - \text{empirical coefficients}$ $\mathcal{S} \mathcal{H} - \text{ground water table, m}$

Values of empirical coefficients

Na		Correlation	Values of empirical coefficients					
	Object	coefficient	0"	8"	<i>C</i> "	d"		
1	South Ukrane	0.9.9	- 9,055	2,61	-0,106	0,0073		
2	Krasnodar province	097	0,216	031	00137	-000057		
3	Central Asia	096	- 011	1,58	-0,722	- 9,099		

Dr. 2.26. Irrigation water use efficiency for lucerne.

On all pilot plots of irrigation regime under optimal pre-irrigation soil moisture of FFC - 80x80x80 and 90x90x90 - the highest alfalfa crop yield near 180-250 c/ha was achieved. Such crop capacity formation took moisture in volume of 9000-10000 cu. m/ha. Good alfalfa crop yield near 150-180 c/ha was achieved under water consumption 8000-9000 cu. m/ha. The lowest alfalfa crop yields (60-70 c/ha) were obtained under water consumption near 6500-7500 cu. m/ha.

It worth to note, that alfalfa growing on the second and the third year in hydromorphous soil conditions in water consumption total volume water supply is 30-55 %, and the rest part is formed at the expense of groundwater inflow and soil moisture use (80-100 %). In half-automorphous soil conditions water supply is more than 65-70 %. In all options of optimal alfalfa irrigation regime with keeping pre-irrigation soil moisture 80x80x80 and 90x90x90 high irrigation water use effectiveness was obtained. On pilot objects of state farm Pahtaaral, 1.02 Kaz, UzNIIH Khorezm Branch and KKNIIZ irrigation water productivity varies within 1.9-2.5 kg/cu. m, so it is higher than upper limit according to FAO effectiveness estimation criteria (table 2.9 and dr. 2.26), while in control options irrigation water productivity is much lower than lower limit and was 0.7-1.3 kg/cu. m.

Data, represented at dr. 2.26, characterize crop capacity change versus water consumption, described by linear dependence. However, gradient differs from such dependence line, obtained by Begishev (Yuzhkazvodproekt) for Toguzken massif (dr. 2.26).

The lowest alfalfa crop yields (60-70 c/ha) were grown under water consumption equaled to 6500-7500 cu. m/ha.

Table 2.9

	1	1		1	1	1			1	1	1		
Pilot plot	Soil-	Water	Salinity	Grou	Agricul	Informa	1		Water	Water	Yield,	0	ion water
index	climatic	allo	degree	ndwa	tural	tion	on during veg.		consumption	consump.	kg/ha		uctivity
	zone	wance		ter	crop	type	per., m3/ha		limits after	exceeding			cy), kg/m3
		rayon		table,			total	incl. at	FAO	or arr. to		after	actual
				m				expense	(average),	comp with		FAO	
								of water	m3/ha	FAO			
								supply		(average)			
1.01. Kaz.	Ц-1-А	1У	MS	0.5-2.5	lucerne of	OBPO	7500	1950	8000-16000	7660	1.5-2.0	1.02	-41.7
1.01. Itu 2.	ц і п	19	1010	0.0 2.0	1 year	80x80							
						К	6500	3750	8000-16000	6060	1.5-2.0	0.93	-47
1.01. Kaz.	Ц-1-А	1У	MS	0.5-2.5	lucerne of	OBPO	8900	4620	8000-16000	14400	1.5-2.0	1.73	-3
					2 year	90x90							
						К	8800	6680	8000-16000	16880	1.5-2.0	1.92	+9.7
1.02. Kaz.	С-П-А	У1	WS	1-2.5	lucerne of	OBPO	7880	1600	8000-16000	15900	1.5-2.0	2.0	+14.3
					2 year	80x80							
						К	7300	1800	8000-16000	14900	1.5-2.0	2.04	+16.6
1.03. Kaz.	С-П-А	У1	MS	0.5-2.5	lucerne	OBPO	7900	2100	8000-16000	10200	1.5-2.0	1.3	-2.6
						К	8200	2400	8000-16000	8500	1.5-2.0	1.04	-40
KKNIIZ	С-П-А	1У	MS	1-2.5	lucerne of 2 year	ПО	8780	6789	8000-16000	16830	1.5-2.0	1.9	+8.5
KKNIIZ	С-П-А	1У	MS	1-2.5		ПО	8320	5623	8000-16000	15300	1.5-2.0	1.84	+5.1
Pakhta	Ц-П-Б	1У	WS	2-3.5	lucerne	OBPO	9980	6500	8000-16000	25000	1.5-2.0	2.5	+43

Assessment of irrigation water use efficiency under lucerne

Pilot plot index	Soil- climatic zone	Water allo wance	Salinity degree	Grou ndwa ter	Agricul tural crop	Informa tion type	Water consumpti on during veg. per., m3/ha		Water consumption limits after	Water consump. exceeding	Yield, kg/ha	Irrigation water productivity (efficiency), kg/m3	
		rayon		table, m			total	incl. at expense of water supply	FAO (average), m3/ha	or arr. to comp with FAO (average)		after FAO	actual
aral						90x90 K	8500	7000	8000-16000	17600	1.5-2.0	2.1	+20
Khorezm branch	С-П-А	1У	WS	1.5-2.0	lucerne 80x80	ПО	8920	5189	8000-16000	17750	1.5-2.0	1.99	+20
UNIIHL	С-П-А	1У	MS	1.5-2.0	80x80	ПО	7250	2400	8000-16000	4900	1.5-2.0	0.1	-60
	С-П-А	1У	WS	1.5-2.5	lucerne 80x80	ПО	9270	4560	8000-16000	19860	1.5-2.0	2.14	22.3

Note: WS - weakly saline, MS - medium saline