INTERNATIONAL FUND FOR SAVING THE ARAL SEA

INTERSTATE COMMISSION FOR WATER COORDINATION OF CENTRAL ASIA

BULLETIN BCULLETIN OF Central Asia

April 2025

Scientific-Information Center of Interstate Commission for Water Coordination of Central Asia

Interstate Commission for Water Coordination of Central Asia

BULLETIN № 3 (108)

April 2025

CONTENT

utes of the 89 th meeting of the Interstate Commission Vater Coordination (ICWC) of the Republic of Kazakhstan, Iyz Republic, Republic of Tajikistan, Turkmenistan Republic of Uzbekistan	3
ults of the use of water withdrawal limits/quotas and the operation nes of reservoirs in the Syr Darya and Amu Darya River basins ng the non-growing season 2024-2025	19
roval of country water withdrawal limits/quotas and forecast operation nes of the reservoir cascades in the Syr Darya and Amu Darya River ns for the growing season 2025	40
ress on implementation of the tasks arising from the summits e Heads of IFAS founder-states	51
ysis of water management situation in the Syr Darya and Amu Darya r Basins over the non-growing season 2024-2025	60
nts	70
ater Convention Implementation Committee met in Geneva	70
^d Meeting of Inter-Institutional Working Group on Tailings Safety d Prevention of Water Pollution	71
ernational Scientific and Practical Conference "Water Diplomacy Central Asia: Trust, Dialogue, and Multilateral Cooperation [·] Sustainable Development"	73

Minutes of the 89th meeting of the Interstate Commission for Water Coordination (ICWC) of the Republic of Kazakhstan, Kyrgyz Republic, Republic of Tajikistan, Turkmenistan and Republic of Uzbekistan

5 April 2025	Samarkand
Chairman:	
Shavkat R. Khamraev	Minister of Water Management, Republic of Uzbekistan
ICWC Members:	
Nurjan M. Nurjigitov	Minister of Water Resources and Irrigation, Republic of Kazakhstan
Daler A. Abdurazokzoda	Head of Central Water and Energy Policy Administration, Ministry of Energy and Water Resources, Republic of Tajikistan (by power of attorney)
Durdi M. Gendjiyev	Chairman of the State Committee for Water Management, Turkmenistan

ICWC Executive Bodies:

Umar A. Nazarov	Head, ICWC Secretariat
Makhmud Ya. Makhramov	Head, BWO Amu Darya
Odil A. Kholkhujaev	Head, BWO Syr Darya
Yerlan K. Auezbekov	Deputy Head, BWO Syr Darya
Dinara R. Ziganshina	Director, Scientific-Information Center (SIC) of ICWC

Alisher M. Nazariy	Deputy Director, SIC ICWC
Farkhodjon N. Djabborov	Senior Officer, ICWC Secretariat
Invited:	
Republic of Kazakhstan	
Aydar J. Abishev	Ambassador-at-Large of the Ministry for Foreign Affairs
Bakhyt D. Jakhanov	Deputy Akim of Kyzylorda province
Nurbol A. Turashbekov	Deputy Akim of Turkistan province
Talgat S. Sharipov	Consul General of the Republic of Kazakhstan in Samarkand
Seilbek S. Nurimbetov	Chairman of the Committee on Water Regulation, Protection, and Use, Ministry of Water Resources
Danyar E. Sharip	and Irrigation Director of the International Cooperation Department, Ministry of Water Resources and Irrigation
Talgat A. Ketebaev	Head of the Transboundary Water Regulation Division of the International Legal Department, Ministry for Foreign Affairs
Aset A. Beristenov	Advisor to the Minister of Water Resources and Irrigation
Kazybek K. Bedebaev	Director, Turkistan Branch of the State Enterprise "Kazvodkhoz"
Turkmenistan	
Yanov D. Paschiev	Head of Water Use Department, State Committee for Water Management

Saparmurat K. Chariev	Head of Digital Technology and Information Security Division, Water Use Department, State Committee for Water Management
Ashirmukhamet Ya. Kurbaniyazov	Senior Officer of Water Use Division, State Committee for Water Management
Republic of Uzbekistan	
Birodarjon Sh. Burhonjonov	Deputy Director of the Agency of
Otabek N. Khazratov	Water Infrastructure Operation Head of Division for International Relations and World Trade Organization, Ministry of Water Management
Asylbek M.Tursunaliyev	Senior officer, Transboundary Water Resources Department, Ministry of Water Management
EC IFAS	
Askhat T. Orazbay	Chairman
Serik A. Bekmaganbetov	Deputy Chairman
Normukhamad I. Sheraliev	Representative of the Republic of Uzbekistan to the Executive Committee of IFAS

Agenda

1. Results of the use of water withdrawal limits/quotas and the operation regimes of reservoirs in the Syr Darya and Amu Darya River basins during the non-growing season 2024-2025.

2. Approval of country water withdrawal limits/quotas and forecast operation regimes of the reservoir cascades in the Syr Darya and Amu Darya River basins for the growing season 2025.

3. Progress on implementation of the tasks arising from the summits of the Heads of IFAS founder-states.

4. Agenda and venue of the regular 90th ICWC meeting.

Decision on the first item:

Take into consideration the reports by BWO Syr Darya and BWO Amu Darya on the results of the use of water withdrawal limits and the operation regimes of reservoir cascades in the Amu Darya and Syr Darya River basins during the non-growing season 2024-2025.

Decision on the second item:

1. Approve water withdrawal limits for the Syr Darya and Amu Darya River basins for growing season 2025 (Appendices 1-2).

2. Take into consideration the forecast operation regimes of reservoir cascades proposed by BWO Syr Darya and BWO Amu Darya for growing season 2025 (Appendices 3-4).

3. BWO Syr Darya and BWO Amu Darya shall provide monitoring of operation regimes of reservoirs.

4. BWO Amu Darya shall provide for the possibility to drawdown the Tuyamuyun reservoir to 3.0 billion m³, if necessary.

Decision on the third item:

1. Continue work on implementation of proposals and initiatives voiced at the meetings of the Heads of IFAS founder states in Turkmenbashi

(2018) and Dushanbe (2023). Pay special attention to boosting activities of the Working Group on Institutional and Legal Improvement of IFAS.

 ICWC members and executives bodies shall take an active part in a regional forum to be organized as part of the High-level International Conference on Glaciers' Preservation, which will be held on 29-31 May 2025 in Dushanbe, Tajikistan.

Decision on the fourth item:

1. Hold the regular 90th ICWC meeting in Astana, Republic of Kazakhstan in August 2025.

2. The date of the regular ICWC meeting shall be agreed in working order.

3. Propose the following agenda for the 90th ICWC meeting:

1) The use of water withdrawal limits and the operation regimes of reservoirs in the Amu Darya and Syr Darya River basins during the growing season 2025.

2) Progress on the fulfillment of tasks arising from the summits of the Heads of IFAS Founder States.

- 3) Additional issues.
- 4) Agenda and venue of the regular 91^{th} meeting.

Republic of Kazakhstan	N. M. Nurjigitov
Kyrgyz Republic	
Republic of Tajikistan	D.A. Abdurazokzoda
Turkmenistan	D. M. Gendjiev
Republic of Uzbekistan	Sh. R. Khamraev

Minister of Water Resources and Irrigation of the Republic of Kazakhstan N. Nurzhigitov, Chairman of the State Committee for Water Resources of Turkmenistan D. Genjiev, Chairman of the Executive Committee of IFAS A. Orazbay were awarded with the badge "Excellent Water Management Expert of the Republic of Uzbekistan" for their great contribution to the interstate water resources management.

Country water withdrawal limits/quotas for the Syr Darya River basin, growing season 2025

Water-user state	Proposed limits, mcm
Republic of Kazakhstan (Dustlik canal)	909
Kyrgyz Republic	270
Republic of Tajikistan	1905
Republic of Uzbekistan	8800
Total:	11884

Country water withdrawal limits/quotas for the Amu Darya River basin, growing season 2025

River basin, state	Water withdrawal limit, mcm			
	Total annual (1.10.24- 1.10.25)	Incl. growing season (1.04.25-1.10.25)		
Total water withdrawal from Amu Darya River	55512	39723		
including:				
Republic of Tajikistan	9942	7003		
From the Amu Darya River to the nominal Kerki gauging station	44000	31520		
Turkmenistan	22000	15500		
Republic of Uzbekistan	22000	16020		
In addition:				
water delivery to the river delta and the Aral Sea, including irrigation water releases and CDW	4200	2100		
sanitary-environmental flow in irrigation systems	800			
Dashoguz province	150			
Khorezm province	150			
Republic of Karakalpakstan	500			

Forecast operation regimes of the reservoir cascades in the Syr Darya River basin, growing season 2025

Reservoir	Unit	April	May	June	July	August	September	Total, mcm		
	Toktogul reservoir									
Inflow to reservoir	м ³ /s	373	540	1064	698	495	374			
innow to reservoir	mcm	967	1446	2758	1870	1326	969	9336		
Volume: beginning of the season	mcm	8451	8537	8966	10531	11142	11423			
end of the season	mcm	8537	8966	10531	11142	11423	11900			
Water releases from the reservoir	M^3/s	340	380	460	470	390	190			
water releases from the reservoir	mcm	881	1018	1192	1259	1045	492	5887		
Water discharge from Uchkurgan	м ³ /s	340	380	460	470	390	190			
HPP (protocol of 27 January 2025)	mcm	881	1018	1192	1259	1045	492	5887		
		Bak	hri Tojik res	ervoir						
Inflow to reservoir	м ³ /s	404	402	321	300	300	257			
(Akdjar gauging station)	mcm	1046	1078	833	804	804	666	5231		
Volume: beginning of the season	mcm	3497	3543	3543	3063	2244	1685			
end of the season	mcm	3543	3543	3063	2244	1685	1771			
Water releases from the reservoir	$\mathbf{M}^{3}/\mathbf{S}$	392	380	440	530	445	200			
	mcm	1015	1019	1140	1420	1191	518	6303		
		Sh	ardara reser	voir						
Inflow to reservoir	M^3/s	400	330	214	150	150	160			
	mcm	1037	884	555	402	402	415	3694		
Volume: beginning of the season	mcm	4561	4696	4503	3513	2029	1057			

Reservoir	Unit	April	May	June	July	August	September	Total,
end of the season	mcm	4696	4503	3513	2029	1057	1005	
Water releases from the reservoir	м ³ /s	250	330	500	550	430	150	
	mcm	648	884	1296	1473	1152	389	5842
Water releases into the Kyzylkum Canal	м ³ /s	80	50	55	110	50	5	
	mcm	207	134	143	295	134	13	925
Water supply to the Aral Sea	м ³ /s	70	70	70	60	50	50	
	mcm	181	187	181	161	134	130	975
		С	harvak reserv	voir				
Inflow to the reservoir	м ³ /s	227	397	493	344	228	129	
	mcm	588	1064	1277	923	611	335	4799
Volume: beginning of the season	mcm	662	876	1419	1938	1975	1867	
end of the season	mcm	876	1419	1938	1975	1867	1800	
Water releases from the reservoir	м ³ /s	143	193	290	330	269	155	
(Discharge from Gazalkent HPP)	mcm	372	517	752	883	720	402	3645
		А	ndijan reserv	voir				
Inflow to the reservoir	M^3/s	142	241	223	129	68	58	
	mcm	367	645	577	346	182	151	2268
Volume: beginning of the season	mcm	1198	1292	1507	1566	1340	1090	
end of the season	mcm	1292	1507	1566	1340	1090	1112	
Water releases from the reservoir	м ³ /s	105	160	200	214	161	50	
	mcm	272	429	518	572	432	129	2353

13

Nurek reservoir	IInit	Unit Forecast						
	Unit	April	May	June	July	August	September	mcm
Volume: beginning of the season	mcm	6178	6232	6655	8407	9544	10142	6178
Inflow to the reservoir	m^3/s	343	681	1267	1371	1261	667	
Inflow to the reservoir	mcm	890	1823	3283	3672	3378	1728	14774
Water releases from the	m ³ /s	370	580	637	990	1061	517	
reservoir	mcm	959	1554	1650	2652	2843	1339	10998
Volume: end of the season	mcm	6232	6655	8407	9544	10142	10530	10530
Accumulation (+), drawdown (-)	mcm	54	424	1752	1136	599	388	4352

Forecast operation regimes of the reservoir cascades in the Amu Darya River basin, growing season 2025

Tuyamuyun reservoir Unit	ITait	Forecast						
	April	May	June	July	August	September	mcm	
Volume: beginning of the season	mcm	3805	3054	3499	4235	4625	4386	3805
Lu flame de dia anna anna in	m ³ /s	300	923	1414	1513	1221	606	
Inflow to the reservoir mcm	779	2473	3665	4053	3270	1571	15811	
Water releases from the	m ³ /s	590	757	1130	1368	1310	927	
reservoir	mcm	1529	2028	2929	3663	3510	2402	16061
Volume: end of the season	mcm	3054	3499	4235	4625	4386	3555	3555

Accumulation (+), drawdown (- mcm -751 445 736 390 -240 -831	-250	
--	------	--

Results of the use of water withdrawal limits/quotas and the operation regimes of reservoirs in the Syr Darya and Amu Darya River basins during the non-growing season 2024-2025¹

1. Amu Darya River Basin

Actual water availability in the Amu Darya River basin at the nominal Kerki gauging station (upstream of Garagumdarya) was 101.4 % of the norm in the non-growing season 2024-2025. During the previous non-growing season, the actual water availability was 72.9 % of the norm.

The use of approved water withdrawal limits/quotas for the reported nongrowing season by state is as follows:

Under the current water-management situation, 93.1 % of the total approved water withdrawal limit was used in the basin, with the limit of 15 791.0 mcm, 14 707.4 mcm was actually used, including:

- Republic of Tajikistan: actually used 2327.2 mcm or 79.1 % of the total limit;
- Turkmenistan: actually used 6333.7 mcm or 97.4 % of the total limit;
- Republic of Uzbekistan: actually used 6046.5 mcm or 95.2 % of the total limit;

Water- user state	Water withdrawal limits/quotas , non-growing season 2024-2025	Actual mcm	%% of use	
Republic of Tajikistan	2941.0	2327.2	79.1	
Turkmenistan	6500.0	6333.7	97.4	
Republic of Uzbekistan	6350.0	6046.5	95.2	
Total	15791.0	14707.4	93.1	

¹ Information on the first item of the 89th ICWC meeting's agenda

In the non-growing season 2024-2025, 97.0 % of the total allocated water limit/quota was used downstream of the nominal Kerki gauging station (upstream of Garagumdarya), including:

- Republic of Uzbekistan: actually used 5767.9 mcm or 96.5 % of the total limit/quota.
- Turkmenistan: actually used 6333.7 mcm or 97.4 % of the total limit/quota.

Water-user state	water withdrawal limits/quotas, non-growing season 2024- 2025	Actual mcm	%% of use
Downstream of the nominal Kerki GS	12480	12101.6	97.0
Turkmenistan	6500	6333.7	97.4
Republic of Uzbekistan	5980	5767.9	96.5

The actual use of the approved water limits by river reach was as follows:

- Upper reaches 2605.8 mcm or 78.7 % of the total water limit, including: Tajikistan 2327.2 mcm or 79.1 % of total water limit; Uzbekistan 278.6 mcm или 75.3 % of total water limit.
- Middle reaches 7967.7 mcm or 95.5 % of total water limit, including: Turkmenistan – 4953.9 mcm or 97.1 % of total water limit; Uzbekistan – 3013.8 mcm or 92.9 % of total water limit.
- Lower reaches 4133.9 mcm or 100.0 % of total water limit, including: Turkmenistan – 1379.8 mcm or 98.6 % of total water limit; Uzbekistan-2754.1 mcm or 100.7 % of total water limit.

Water-user state	Water withdrawal limits/quotas, non- growing season 2024-2025	Actual mcm	%% of use
Upper reaches	3311.0	2605.8	78.7
Republic of Tajikistan	2941.0	2327.2	79.1
Republic of Uzbekistan	370.0	278.6	75.3
Middle reaches	8345.0	7967.7	95.5
Turkmenistan	5100.0	4953.9	97.1
Republic of Uzbekistan	3245.0	3013.8	92.9
Lower reaches	4135.0	4133.9	100.0
Turkmenistan	1400.0	1379.8	98.6
Republic of Uzbekistan	2735.0	2754.1	100.7

It was planned to deliver 2100 mcm to the river delta and the Aral Sea in the non-growing season. The actual water inflow was 1563 mcm or 74.4 % of the plan.

Forecast operation regimes of the Nurek and Tuyamuyun reservoirs were drafted based on average water availability.

The inflow to the Nurek reservoir during the non-growing season was expected to be 4145 mcm, while the actual inflow was 4423.9 mcm or 106.7 % % of the forecast. Water releases from the reservoir were planned at 8039 mcm, and the actual water releases amounted to 8131.4 mcm or 101.1 of the plan.

The water volume in the reservoir was planned to be 6275 mcm by the end of the non-growing season 2024-2025, and the actual volume was 6178 mcm or 98.4 % of the plan.

The inflow to the Tuyamuyun reservoir was expected to be 6373 mcm during the non-growing season, while the actual inflow was 6907.5 mcm or 108.4 %. Water releases from the reservoir were planned at 7492 mcm and the actual water releases amounted to 7101.1 mcm or 94.8 %. of the plan.

Water volume in the reservoir was planned to be 2880 mcm by the end of the non-growing season 2024-2025; the actual volume amounted to 3805 mcm or 132.1 % of the plan.

		Unit	Nurek reservoir	Tuyamuyun reservoir
Water volume: beginning of the season		mcm	10568	3999
	forecast	mcm	4145	6373
Inflow to the reservoir	actual	mcm	4423.9	6907.5
		%%	106.7	108.4
	forecast	mcm	8039	7492
Water releases	actual	mcm	8131.4	7101.1
		%%	101.1	94.8
	forecast	mcm	6275	2880
Water volume: end of the season	actual	mcm	6178	3805
season		%%	98.4	132.1
	forecast	mcm	-4293	-1119
Accumulation (+), drawdown (-)	actual	mcm	-4390	-194
		%%	102.3	173.3

Analysis of the use of water withdrawal limits/quotas in the Amu Darya River basin, non-growing season 2024-2025, mcm

	Water withdrawal limits/quotas for the non-growing season 2024-2025	Actual	%%
Upper Darya Division (UDD) (Upper reaches), including	3311.0	2605.8	78.7
Tajikistan	2941.0	2327.2	79.1
Uzbekistan	370.0	278.6	75.3
Water withdrawal from the Amu Darya at nominal Kerki g/s	12480	12101.6	97.0
including:			
Turkmenistan	6500.0	6333.7	97.4
Uzbekistan	5980.0	5767.9	96.5

	Water withdrawal	Actual	%%
Middle Darya Division (MDD) (Middle reaches), including:	8345	7967.70	95.5
Turkmenistan	5100	4953.9	97.1
Uzbekistan	3245	3013.8	92.9
Lower reaches, Including:	4135	4133.9	100.0
Turkmenistan	1400.0	1379.8	98.6
Uzbekistan:	2735.0	2754.1	100.7
In addition, sanitary flow, total	800	781.0	97.6
Incl., Karakalpakstan	500	495.6	99.1
Dashoguz province	150	149.8	99.9
Khorezm province	150	135.6	90.4
Total in the basin: including	15791.0	14707.4	93.1
Tajikistan	2941.0	2327.2	79.1
Turkmenistan	6500.0	6333.7	97.4
Uzbekistan	6350.0	6046.5	95.2

	October	November	December	January	February	March	Actual water supply 01.10.24- 31.03.25
From the Amu Darya at Samanbay g/s	131	245	321	54	111	100	962
Total water discharge from Dustlik and Suenli canal system	69	59	39	39	18	25	249
CDW	89	50	42	54	57	60	352
Total	289	354	402	147	186	185	1563
Cumulative	289	643	1045	1192	1378	1563	

Water supply to the river delta and the Aral Sea during the non-growing season 2024-2025, mcm

	I Luit	Actual						Total
	Unit	October	November	December	January	February	March	Total
			Nurek re	servoir				
Volume: beginning of the season	mcm	10568	10525	10314	9282	8175	6996	10568
Inflow to the reservoir	m^3/s	373	344	269	231	200	265	
innow to the reservoir	mcm	999	891	721	619	484	710	4424
Water releases from the	m^3/s	382	421	603	605	614	424	
reservoir	mcm	1022	1090	1616	1622	1485	1137	7971
Volume: end of the season	mcm	10525	10314	9282	8175	6996	6178	6178
Accumulation (+), drawdown (-)	mcm	-43	-210	-1033	-1106	-1180	-817	-4390
			Tuyamuyun	reservoir	· · · · · · · · · · · · · · · · · · ·		· · ·	
Volume: beginning of the season	mcm	3999	4048	4560	5102	5015	4876	3999
Inflow to the reservoir	m^3/s	401	408	588	476	393	365	
innow to the reservoir	mcm	1073	1057	1574	1275	951	977	6907
Water releases from the	m^3/s	383	210	385	508	451	764	
reservoir	mcm	1025	545	1031	1362	1091	2047	7101
Volume: end of the season	mcm	4048	4560	5102	5015	4876	3805	3805
Accumulation (+), drawdown (-)	mcm	49	512	543	-87	-139	-1070	-194

Actual operation regime of Nurek and Tuyamuyun reservoirs (October 2024 – March 2025)

2. Syr Darya River Basin

I. Forecast of inflow

The forecast for the non-growing season 2024-2025 was received from UzHydromet on 27 September 2024.

Information on expected operation regime of the Toktogul reservoir was provided by the Coordination Dispatch Center (CDC) "Energy" on 10 October 2024.

The forecast operation regime of the Charvak reservoir was received from the SUE "National Dispatch Center" under the Ministry of Energy of the Republic of Uzbekistan, and agreed with the Uzbek Ministry of Water Management and JSC "UzbekHydroenergy".

The forecast operation regime of the Andijan reservoir was received from JSC "UzbekHydroenergy, and agreed with the Ministry of Water Management of the Republic of Uzbekistan.

The forecast operation regime of the Shardara reservoir was received from the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan. Based on the forecast data, inflow to the upper reservoirs was expected to be as follows:

- Toktogul reservoir – 102%;

- Charvak -94% of the norm.

The total lateral inflow was expected to be 92% of the norm.

Overall, water availability was expected at the level of 94% of the norm in the Syr Darya River basin.

The forecast operation schedule of the Naryn-Syr Darya reservoir cascade for the non-growing season was taken into consideration at the 87th ICWC meeting and country water withdrawal limits/quotas for the Syr Darya River basin was approved.

Actual water management situation from 1.10.2024 to 31.03.2025 is characterized by the following:

⁻ Andijan reservoir – 88%;

II. Total inflow (Table 1)

The total inflow (water availability) in the Syr Darya River basin for the non-growing season:

Norm: 16 413 mcm

Forecast inflow (according to UzHydromet): 15 415 mcm or 94% of the

norm

Actual inflow: 16 806 mcm, which is 1391mcm more or 109% of the forecast (102% of the norm).

III. Inflow to the upper reservoirs (Table 1)

The norm for inflow to the upper reservoirs of the Naryn-Syr Darya cascade is 5283mcm. The forecast inflow was 5150 mcm or 97% of the norm.

The actual inflow to the upper reservoirs was 6119 mcm, which is by 969 mcm more or 119% of the forecast (116% of the norm):

- Inflow to the Toktogul reservoir:

Norm: 2932 mcm

Forecast: 2993 mcm

Actual: 3707 mcm, which is 714 mcm more, or 124% of the forecast (126% of the norm).

-Inflow to the Andijan reservoir:

Norm: 929 mcm

Forecast: 817 mcm

Actual: 809 mcm or 99% of the forecast (87% of the norm).

- Inflow to the Charvak reservoir:

Norm: 1422 mcm

Forecast: 1340 mcm

Actual: 1603 mcm, which is 263 mcm more or 120% of the forecast (113% of the norm).

IV. Lateral inflow (Table 1)

Lateral inflow in the Syr Darya River basin from the Toktogul reservoir to Shardara reservoir is as follows:

Norm: 11 130 mcm

Forecast (according to UzHydromet): 10 265 mcm, or 92% of the norm Actual lateral inflow: 10 687 mcm, which is 422 mcm more, or 104% of the forecast (96% of the norm).

				Grow	ing season	, mcm			
	2025			2024					
Water facility	norm	forecast	forecast/ norm (%)	norm	forecast	forecast/ norm (%)	actual	actual/ forecast (%)	actual/ norm (%)
			Inflow to upper	reservoi	`S				
Toktogul	9827	9336	95	9827	9336	95	10693	115	109
Andijan	2927	2268	78	2927	2411	82	2465	102	84
Charvak	5777	4799	83	5777	4885	85	5071	104	88
Total:	18531	16403	89	18531	16632	90	18229	110	98
Lateral inflow									
Toktogul – Uchkurgan	1216	1155	95	1216	1155	95	1219	105	100
Andijan – Uchtepe	2511	2211	88	2511	2053	82	2014	98	80
Uchkurgan- Uchtepe- Bakhri Tojik	3349	2843	85	3349	2685	80	3390	126	101
Bakhri Tojik – Shardara	2985	2369	79	2985	2843	95	3087	109	103
Gazalkent - Chinaz- Chirchik	902	790	88	902	790	88	765	97	85
Total:	10963	9368	85	10963	9526	87	10475	110	96
Grand total (total inflow):	29494	25771	87	29494	26158	89	28704	110	97

29

	Water volume in reservoir, mcm						
Reservoir	Actual as of April 1, 2025	Actual as of April 1, 2024 April 1, 2025 (excluding A		Actual as of April 1, 2024 (excluding dead volume)	Dead volume	Difference (April 1, 2025 minus April 1, 2024)	
		Upper reser	rvoirs				
Toktogul	8451	7277	2951	1777	5500	1174	
Andijan	1198	957	1048	807	150	241	
Charvak	662	611	236	185	426	51	
Total:	10311	8845	4235	2769	6076	1466	
		In-stream res	ervoirs				
Bakhri Tojik	3497	3315	2580	2398	917	182	
Shardara	4561	4821	3591	3851	970	-260	
Total:	8058	8136	6171	6249	1887	-78	
Grand total:	18369	16981	10406	9018	7963	1388	

	I	Table 3

	Water releases, mcm					
Reservoir	Forecast schedule 2025	Forecast schedule 2024	Actual 2024	Difference (forecast 2025 minus forecast 2024)		
Upper reservoirs						
Toktogul	5887	5771	4990	116		
Andijan	2353	2303	2376	50		
Charvak (discharge from Gazalkent HPP)	3645	3823	4832	-178		
Total:	11885	11897	12198	-12		
In-stream reservoirs						
Bakhri Tojik	6303	6156	6421	147		
Shardara	5842	6208	5267	-366		
Total:	12145	12364	11688	-219		
Grand total:	24030	24261	23886	-231		

V. Inflow to in-stream reservoirs and water supply to the Aral Sea (Table 2)

According to the forecast, inflow to the Bakhri Tojik reservoir was to be 11 286 mcm for the non-growing season, while the actual inflow to the reservoir was 12 323, which is 1037 mcm more than the forecast schedule.

According to the forecast schedule, the inflow to the Shardara reservoir was to be 10 938 mcm.

According to Uzhydromet (Chinaz -Syr Darya g/s + Bozsu g/s+ Keles g/s), the actual inflow to the Shardara reservoir was 13 358 mcm, which is 2420 mcm more than the forecast schedule.

According to RSE "Kazhydromet" (Kokbulak g/s+Keles g/s), the actual inflow to the Shardara reservoir was 12 658 mcm, which is 1720 mcm more than the forecast schedule.

Inflow to the Aral Sea and the Aral Sea region was expected to be 1672 mcm, while the actual inflow, as recorded at the Karateren gauging station, was 1791 mcm, which is 119 mcm more than the forecast schedule.

VI. Water releases from reservoirs (Table 3)

According to the forecast operation schedule of the Naryn-Syr Darya reservoir cascade, it was planned to discharge 27 644 mcm of water from reservoirs during the non-growing season.

The actual water releases from reservoirs amounted to 29 424 mcm, which is 1780 mcm or 106% higher than the forecast:

Toktogul Reservoir: 7996 mcm - planned water releases, 8260 mcm - actual water releases.

Andijan Reservoir: 691mcm - planned water releases, 579 mcm - actual water releases.

Charvak Reservoir: 2633 mcm - planned water releases, 2687 mcm - actual water releases.

Bakhri Tojik Reservoir: 9904 mcm - planned water releases, 11 133 mcmactual water releases.

Shardara Reservoir: 6420 mcm - planned water releases, 6765 mcm - actual water releases.

VII. Water storage in reservoirs (Table 4)

The actual water storage in reservoirs of the Naryn-Syr Darya reservoir cascade was 18 665 mcm at the beginning of the non-growing season (as of 1 October 2024).

As of 1 April 2025, according to the forecast schedule, the water storage was to be 18 302 mcm at the end of the non-growing season.

In fact, the actual water storage at the end of the non-growing season was 18 369 mcm, which is 67 mcm more than the forecast value.

Water storage in the upper reservoirs was 15 828 bcm at the beginning of the non-growing season.

According to the forecast schedule, the water storage by the end of the non-growing season was expected to be 9681 mcm. In fact, 10 311 of water were accumulated, which is 630 mcm more than the forecast schedule.

Water accumulation by reservoir:

- Toktogul Reservoir forecast: 8033 mcm, actual: 8451mcm, 418 mcm more than the forecast;
- Andijan reservoir forecast: 1114 mcm, actual: 1198 mcm, 84 mcm more than the forecast;
- Charvak reservoir forecast: 534 mcm, actual: 662 mcm, 128 mcm more than the forecast;

Water storage in the in-stream reservoirs was 2 837 mcm by the beginning of the non-growing season.

According to the forecast schedule, the water volume in in-stream reservoirs was expected to be 8621mcm at the end of the non-growing season, while the actual volume was 8058 mcm, which is 563 mcm less than the forecast schedule.

Water volume by reservoir:

- Bakhri Tojik reservoir forecast: 3446 mcm, actual: 3497 mcm, 51 mcm more than the forecast.
- Shardara reservoir forecast: 5175 mcm, actual: 4561 mcm, 614 mcm more than the forecast.

	Water volume in reservoirs, mcm						
Reservoir	Actual by October 1, 2024	Scheduled by April 1, 2025	Actual by April 1, 2025	Difference (actual "_" schedule)	Actual by April 1, 2024	Difference (actual 2025 "_" actual 2024)	
Upper reservoirs							
Toktogul	13036	8033	8451	418	7277	1174	
Andijan	987	1114	1198	84	957	241	
Charvak	1805	534	662	128	611	51	
Total:	15828	9681	10311	630	8845	1466	
In-stream reservoirs							
Bakhri Tojik	1716	3446	3497	51	3315	182	
Shardara	1121	5175	4561	-614	4821	-260	
Total:	2837	8621	8058	-563	8136	-78	
Grand total:	18665	18302	18369	67	16981	1388	

VIII. Water supply to countries (Table 5).

According to the approved limits and submitted requests from water users, water was delivered to user countries from 1 October 2024 to 31 March 2025 in the following amounts:

- Republic of Kazakhstan: limit 488 mcm, actual 490 mcm
- Kyrgyz Republic: limit 47 mcm, actual 48 mcm
- Republic of Tajikistan: limit 365 mcm, actual 56 mcm
- Republic of Uzbekistan: limit 3347 mcm, actual 3330 mcm.

The actual total water withdrawal by water user countries amounted to 3924 mcm, given the water withdrawal limit of 4247 mcm.

Table	5
I avic	J

Water-user country	Water withdrawal, mcm October 1, 2024 – March 31, 2025			
	Limit	Actual		
Republic of Kazakhstan (Dustlik canal)	488	490		
Kyrgyz Republic	47	48		
Republic of Tajikistan	365	56		
Republic of Uzbekistan	3347	3330		
Total	4247	3924		
Total, October November December February January March mcm Toktogul reservoir m^3/s Inflow to the reservoir mcm Volume: beginning of the season mcm end of the season mcm m^3/s Water releases from the reservoir mcm Bakhri Tojik reservoir m^3/s Inflow to reservoir (Akdjar g/s) mcm Volume: beginning of the season mcm end of the season mcm m^3/s Water releases from the reservoir mcm Shardara reservoir m^3/s Inflow to the reservoir mcm Volume: beginning of the season mcm end of the season mcm

Forecast operation schedule of the Naryn-SyrDarya reservoir cascade, non-growing season 2024-2025

		October	November	December	January	February	March	Total,
Water releases from the reservoir	m ³ /s	200	450	500	500	400	400	
	mcm	536	1166	1339	1339	968	1071	6420
Water supply to the Aral Sea	m^3/s	50	70	100	120	140	160	
	mcm	134	181	268	321	339	429	1672
		Char	vak reservoii	•				
Inflow to the reservor	m^3/s	102	91	78	69	69	101	
	mcm	272	236	209	186	167	271	1340
Volume: beginning of the season	mcm	1805	1726	1556	1247	906	637	
end of the season	mcm	1726	1556	1247	906	637	534	
Water releases from the reservoir	m^3/s	139	157	193	197	180	140	
(Disharge from Gazalkent HPP)	mcm	373	406	518	527	435	374	2633
		And	ijan reservoir					
Inflow to the reservoir	m^3/s	51	50	53	45	48	64	
	mcm	138	130	143	120	117	171	817
Volume: beginning of the season	mcm	987	955	961	1013	1023	1077	
end of the season	mcm	955	961	1013	1023	1077	1114	
Water releases from the reservoir	m^3/s	63	48	34	41	26	50	
	mcm	170	124	90	110	63	134	691

Actual operation regime of the Naryn-SyrDarya reservoir cascade, non-growing season 2024-2025

		October	November	December	January	February	March	Total, mcm			
Toktogul reservoir											
Inflow to the reservoir	m^3/s	321	288	195	195	180	233				
	mcm	859	745	521	521	435	625	3707			
Volume: beginning of the season	mcm	13036	13171	12709	11185	9860	8732				
end of the season	mcm	13171	12709	11185	9860	8732	8451				
Water releases from the reservoir	m^3/s	262	464	759	688	647	342				
	mcm	702	1203	2032	1842	1566	917	8260			
		Bal	khri Tojik								
Inflow to the reservoir	m^3/s	403	858	1056	950	897	551				
(Akdjar g/s)	mcm	1079	2225	2829	2544	2170	1475	12323			
Volume: beginning of the season	mcm	1716	2550	3335	3306	3340	3330				
end of the season	mcm	2550	3335	3306	3340	3330	3497				
Water releases from the reservoir	m^3/s	194	572	1166	926	891	511				
	mcm	520	1483	3124	2481	2156	1369	11133			
		Shard	ara reservoir								
Inflow to the reservoir	m ³ /s	302	812	1504	1025	882	574				
(Chinaz -Syr Darya g/s + Bozsu g/s+ Keles g/s)	mcm	808	2104	4028	2746	2133	1538	13358			
Inflow to the reservoir	m^3/s	279	762	1365	1006	842	578				
(Kokbulak g/s+Keles g/s)	mcm	747	1975	3656	2694	2037	1549	12658			

		October	November	December	January	February	March	Total,
Volume: beginning of the season	mcm	1121	1422	2124	4402	4438	4503	
end of the season	mcm	1422	2124	4402	4438	4503	4561	
Water releases from the reservoir	m^3/s	116	418	394	698	639	335	
	mcm	311	1084	1054	1871	1547	898	6765
Water supply to the Aral Sea	m ³ /s	52	96	115	119	142	162	
	mcm	140	248	307	319	344	434	1791
		Charv	ak reservoir					
Inflow to the reservoir	m^3/s	118	123	93	84	79	113	
	mcm	317	320	248	226	192	301	1603
Volume: beginning of the season	mcm	1805	1750	1678	1342	1037	750	
end of the season	mcm	1750	1678	1342	1037	750	662	
Water releases from the reservoir	m^3/s	139	169	209	188	179	142	
(Disharge from Gazalkent HPP)	mcm	372	439	560	502	433	380	2687
		Andij	an reservoir					
Inflow to the reservoir	m^3/s	71	76	34	34	40	53	
	mcm	191	198	91	90	97	142	809
Volume: beginning of the season	mcm	987	994	1075	1117	1192	1219	
end of the season	mcm	994	1075	1117	1192	1219	1198	
Water releases from the reservoir	m^3/s	70	42	15	5	28	60	
	mcm	187	109	40	13	69	162	579

Approval of country water withdrawal limits/quotas and forecast operation regimes of the reservoir cascades in the Syr Darya and Amu Darya River basins for the growing season 2025²

1. Amu Darya River Basin

Water withdrawal limits from Amu Darya River and water supply to the river delta and the Aral Sea, growing season 2025

	Water withdrawal limits, mcm					
River basin, state	Total for year (1.10.24-1.10.25)	incl. growing season (1.04.25-1.10.25)				
Total from the Amu Darya River	55512	39723				
including:						
Republic of Tajikistan	9942	7003				
Water withdrawal from the Amu Darya River to nominal Kerki gauging station	44000	31520				
Turkmenistan	22000	15500				
Uzbekistan	22000	16020				
In addition:						
Water delivery to the river delta and the Aral Sea, including irrigation water and CDW	4200	2100				
Sanitary-environmental flow to irrigation systems	800					
Dashoguz province	150					
Khorezm province	150					
Republic of Karakalpakstan	500					

² Information on the second item of the 89th ICWC meeting's agenda

Nurek reservoir	Unit			Fo	recast			Total
	Unit	April	May	June	July	August	September	Total
Volume: beginning of the season	mcm	6178	6232	6655	8407	9544	10142	6178
Inflow to the reservoir	m ³ /s	343	681	1267	1371	1261	667	
	mcm	890	1823	3283	3672	3378	1728	14774
Water releases from the	m ³ /s	370	580	637	990	1061	517	
reservoir	mcm	959	1554	1650	2652	2843	1339	10998
Volume: end of the season	mcm	6232	6655	8407	9544	10142	10530	10530
Accumulation (+), drawdown (-)	mcm	54	424	1752	1136	599	388	4352

Forecast operation regime of the Nurek and Tuyamuyun reservoirs April 2025- September 2025

Tuyonguyan nagamuain	Unit			Fore	ecast			Total
Tuyamuyun reservoir	Unit	April	May	June	July	August	September	Total
Volume: beginning of the season	mcm	3805	3054	3499	4235	4625	4386	3805
Inflow to the reservoir	m ³ /s	300	923	1414	1513	1221	606	
	mcm	779	2473	3665	4053	3270	1571	15811
Water releases from the	m ³ /s	590	757	1130	1368	1310	927	
reservoir	mcm	1529	2028	2929	3663	3510	2402	16061
Volume: end of the season	mcm	3054	3499	4235	4625	4386	3555	3555
Accumulation (+), drawdown (-)	mcm	-751	445	736	390	-240	-831	-250

2. Syr Darya River Basin

I. Forecast of inflow

On 5 March 2025, prelimenary forecast from UzHydromet was received. According to this forecast, water availability in the Syr Darya River basin during the growing season 2025 is expected as follows: river basins in the south of the Fergana Valley - 95-105% (100%); Naryn river basin - 90-100% (95%); river basins in the north of the Fergana Valley - 75-85% (80%); Karadarya, Ahangaran and Chirchik basins - 70-80% (75%) of the norm.

On 14 March 2025, the information on expected operation regime of the Toktogul reservoir was provided by the Coordination Dispatch Center (CDC) "Energy".

The forecast operation regime of the Charvak reservoir was received from the SUE "National Dispatch Center" under the Ministry of Energy of the Republic of Uzbekistan, and agreed with the Uzbek Ministry of Water Management and JSC "UzbekHydroenergy".

The forecast operation regime of the Andijan reservoir was received from JSC "UzbekHydroenergy", and agreed with the Ministry of Water Management of the Republic of Uzbekistan.

The forecast operation regime of the Shardara reservoir was received from the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan.

Based on the forecast data, inflow to the upper reservoirs was expected to be as follows:

- Toktogul reservoir – 95%

- Andijan reservoir – 78%

- Charvak -83% of the norm

The total lateral inflow was expected to be 85% of the norm.

Overall, water availability was expected at the level of 87% of the norm in the Syr Darya River basin.

II. Total inflow (Table 1)

The total inflow to the Syr Darya River basin for the growing season:

Norm : 29 494 mcm

Forecast: 25 771 mcm (87% of the norm).

III. Inflow to upper reservoirs (Table 1)

The norm of inflow to upper reservoirs of the Naryn-Syr Darya cascade for the growing season is 18 531 mcm.

The forecast inflow was 16 403 mcm or 89% of the norm. Inflow to the Toktogul reservoir: Norm: 9827 mcm Forecast: 9336 mcm (95% of the norm). Inflow to the Andijan reservoir: Norm: 2927 mcm Forecast: 2268 mcm (78% of the norm). Inflow to the Charvak reservoir: Norm: 5777 mcm Forecast: 4799 mcm (83% of the norm).

IV. Lateral inflow (Table 1)

Lateral inflow is as follows: Norm: 10 963 mcm Forecast: 9368 mcm, or 85% of the norm

V. Water storage in reservoirs (Table 2)

As of 1 April 2025, the total volume of water in reservoirs is 18 368 mcm (including dead volume of 7963 mcm). Water storage in reservoirs, excluding dead volume, is 10405 mcm.

Available water resources of the Naryn-Syr Darya reservoir cascade (total inflow **plus** water storage in reservoirs without dead volume) for the growing season 2025 are 36 176 mcm.

 $(25\ 771\ \mathrm{mcm} + 10\ 405\ \mathrm{mcm} = 36\ 176\ \mathrm{mcm})$

				Grow	ving season	, mcm							
		202	5			2024							
Water facility	norm	forecast	forecast/ norm (%)	norm	forecast	forecast/ norm (%)	actual	actual/ forecast (%)	actual/ norm (%)				
	Inflow to upper reservoirs												
Toktogul	9827	9336	95	9827	9336	95	10693	115	109				
Andijan	2927	2268	78	2927	2411	82	2465	102	84				
Charvak	5777	4799	83	5777	4885	85	5071	104	88				
Total:	18531	16403	89	18531	16632	90	18229	110	98				
			Later	al inflow									
Toktogul – Uchkurgan	1216	1155	95	1216	1155	95	1219	105	100				
Andijan – Uchtepe	2511	2211	88	2511	2053	82	2014	98	80				
Uchkurgan – Uchtepe – Bakhri Tojik	3349	2843	85	3349	2685	80	3390	126	101				
Bakhri Tojik –Shardara	2985	2369	79	2985	2843	95	3087	109	103				
Gazalkent- Chinaz- Chirchik	902	790	88	902	790	88	765	97	85				
Total:	10963	9368	85	10963	9526	87	10475	110	96				
Grand total (total inflow):	29494	25771	87	29494	26158	89	28704	110	97				

45

		Water	volume in reservoir	rs, mcm						
Reservoir	Actual by April 1, 2025	Actual by April 1, 2024 Actual by April 1, 2 (excluding of volume)		Actual by April 1, 2024 (excluding dead volume)	Dead volume	Difference (April 1, 2025 minus April 1, 2024)				
Upper reservoirs										
Toktogul	8451	7277	2951	1777	5500	1174				
Andijan	1198	957	1048	807	150	241				
Charvak	662	611	236	185	426	51				
Total:	10311	8845	4235	2769	6076	1466				
		In-stream re	servoirs							
Bakhri Tojik	3497	3315	2580	2398	917	182				
Shardara	4561	4821	3591	3851	970	-260				
Total:	8058	8136	6171	6249	1887	-78				
Grand total:	18369	16981	10406	9018	7963	1388				

	Water releases, mcm										
Reservoir	Forecast schedule 2025	Forecast schedule 2024	Actual 2024	Difference (forecast 2025 minus forecast 2024)							
Upper reservoirs											
Toktogul	5887	5771	4990	116							
Andijan	2353	2303	2376	50							
Charvak (discharge from Gazalkent HPP)	3645	3823	4832	-178							
Total:	11885	11897	12198	-12							
	In	-stream reservoirs									
Bakhri Tojik	6303	6156	6421	147							
Shardara	5842	6208	5267	-366							
Total:	12145	12364	11688	-219							
Grand total:	24030	24261	23886	-231							

VI. Water releases (Table 3)

According to the forecast schedule of operation regime of the Naryn-Syr Darya reservoir cascade, 24 030 mcm of water is to be released during the growing season 2025.

VII. Water withdrawal limits (Table 4)

Taking into account requests of water user states, the following water withdrawal limits for the growing season are proposed.

The total volume of water withdrawal limits of water-user states for the growing season is 11884 mcm.

Requests, mcm	
Republic of Kazakhstan (Dustlik canal)	909
Kyrgyz Republic	270
Republic of Tajikistan	1905
Republic of Uzbekistan	8800
Total:	11 884

Table 4

Water -user state	Proposed limits, mcm
Republic of Kazakhstan (Dustlik canal)	909
Kyrgyz Republic	270
Republic of Tajikistan	1905
Republic of Uzbekistan	8800
Total:	11884

Based on the data received from the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan, inflow to the Aral Sea and Aral Sea region for the growing season is expected to be 975 mcm. Taking into account the expected water availability as predicted by UzHydromet, the existing water storage and signed protocols and agreements on power supply between µministries of energy and water of Uzbekistan, ministries of energy, water and irrigation of Kazakhstan, and the Ministry of Energy of the Kyrgyz Republic, as well as forthcoming tri- and bilateral protocols between Kazakhstan, Uzbekistan, and Tajikistan on additional water releases from the Bakhri Tojik reservoir, a forecast operation regime for the Naryn-Syr Darya reservoir cascade for the 2025 growing season has been drafted (Table 5).

Forecast operation regime of the Naryn-Syr Darya reservoir cascade April 1- September 30, 2025

Reservoir	Unit	April	May	June	July	August	September	Total, mcm
		Тс	ktogul reserv	voir				•
Inflow to the reservoir	m ³ /s	373	540	1064	698	495	374	
	mcm	967	1446	2758	1870	1326	969	9336
Volume: beginning of the season	mcm	8451	8537	8966	10531	11142	11423	
end of the season	mcm	8537	8966	10531	11142	11423	11900	
Water releases from the reservoir	m^3/s	340	380	460	470	390	190	
	mcm	881	1018	1192	1259	1045	492	5887
Discharge from Uchkurgan HPP	m^3/s	340	380	460	470	390	190	
(by protocol as of 27 January 2025)	mcm	881	1018	1192	1259	1045	492	5887
		Bak	hri Tojik rese	ervoir				
Inflow to the reservoir	m^3/s	404	402	321	300	300	257	
(Akdjar g/s)	mcm	1046	1078	833	804	804	666	5231
Volume: beginning of the season	mcm	3497	3543	3543	3063	2244	1685	
end of the season	mcm	3543	3543	3063	2244	1685	1771	
Water releases from the reservoir	m^3/s	392	380	440	530	445	200	
	mcm	1015	1019	1140	1420	1191	518	6303
		Sł	ardara reserv	voir				
Inflow to the reservoir	m^3/s	400	330	214	150	150	160	
	mcm	1037	884	555	402	402	415	3694

Reservoir	Unit	April	May	June	July	August	September	Total,
Volume: beginning of the season	mcm	4561	4696	4503	3513	2029	1057	
end of the season	mcm	4696	4503	3513	2029	1057	1005	
Water releases from the reservoir	m^3/s	250	330	500	550	430	150	
	mcm	648	884	1296	1473	1152	389	5842
Releases into Kyzylkum canal	m^3/s	80	50	55	110	50	5	
	mcm	207	134	143	295	134	13	925
Water supply to the Aral Sea	m^3/s	70	70	70	60	50	50	
	mcm	181	187	181	161	134	130	975
		C	harvak reserv	voir				
Inflow to the reservoir	m^3/s	227	397	493	344	228	129	
	mcm	588	1064	1277	923	611	335	4799
Volume: beginning of the season	mcm	662	876	1419	1938	1975	1867	
end of the season	mcm	876	1419	1938	1975	1867	1800	
Water releases from the reservoir	m^3/s	143	193	290	330	269	155	
(Discharge from Gazalkent HPP)	mcm	372	517	752	883	720	402	3645
		А	ndijan reserv	voir				
Inflow to the reservoir	m^3/s	142	241	223	129	68	58	
	mcm	367	645	577	346	182	151	2268
Volume: beginning of the season	mcm	1198	1292	1507	1566	1340	1090	
end of the season	mcm	1292	1507	1566	1340	1090	1112	
Water releases from the reservoir	m^3/s	105	160	200	214	161	50	
	mcm	272	429	518	572	432	129	2353

Progress on implementation of the tasks arising from the summits of the Heads of IFAS founder-states³

(31 January – 2 April 2025)

General information

The summits of the Council of Heads of IFAS founder-states was held on 24 August, 2018 in the city of Turkmenbashi, Turkmenistan and on 15 September, 2023 in Dushanbe, Tajikistan. Presidents of CA countries voiced proposals and initiatives reflecting a wide range of matters related to regional cooperation in the area of water management, environment, energy and socio-economy. Implementation of these initiatives in the region's countries is checked at ICWC meetings on regular basis.⁴

The 88th ICWC meeting made the following decision: "1. Acknowledge the efforts of ICWC members and executive bodies in implementing the proposals and initiatives put forward at the meetings of the Heads of IFAS founder-states in Turkmenbashi (2018) and Dushanbe (2023). 2. ICWC members and executive bodies shall provide updates on implementation of the tasks arising from the IFAS summits. 3. ICWC members to assist in organizing a regional forum as part of the High Level International Conference on Glaciers' Preservation in May-June 2025 in Dushanbe. Entrust SIC ICWC and ask EC IFAS to mobilize necessary financing as far as possible."

Brief information on activities of the countries and executive bodies on implementation of the tasks arising from the summits, as well as their ongoing preparation to the Forum in Dushanbe is provided below.

1. Institutional and legal improvement of IFAS, strengthening its capacity and image in the international arena

The efforts to improve the institutional and legal framework of IFAS have been ongoing under the chairmanship of Kazakhstan (2024–2026). The 13th meeting of the Working Group (WG) on institutional and legal improvement of IFAS was held in Almaty on 12-13 December. Following this meeting, the EC IFAS sent a note to the member countries requesting their review and feedback

³ Information on the third item of the 89th ICWC meeting's agenda

⁴ Since the 77th ICWC meeting (5-6 November 2019)

by 15 February on the draft proposals for a potential new institutional structure of the improved IFAS, as well as on the proposed new Fund's name: "Organization for Cooperation of the Aral Sea Basin Countries."

As of 13 March 2025, responses have been received from Kazakhstan (Note 01-03-10-01/497 of 03.02. 2025), Turkmenistan, and Tajikistan.

2. Development and implementation of joint projects and programs as part of ASBP-4 (2020-2023)

Implementation and systematic monitoring of ASBP-4 are coordinated under the chairmanship of Kazakhstan in IFAS. The Executive Committee of IFAS based in the Republic of Kazakhstan continues collaborating with international partners, local executive bodies, non-governmental and community organizations, scientific communities and academia on ASBP-4.

As part of ASBP-4, **the Central Asian countries**, with the support of national governments and international partners, develop and implement joint projects on sustainable socio-economic development in the Aral Sea region.

In Kazakhstan, under Climate Resilient Water Resources Development Program, Phase 1 for Kyzylorda province, eight projects are planned at the expense of an IDB loan.

The ASBP-4 project titled "Hydromodule zoning of the Syr Darya River basin using remote sensing data and satellite mapping technologies to optimize water consumption and irrigation regimes for regional crops" is under negotiation between SIC ICWC, EC IFAS, KazNIIVH, and AFD

3. Water conservation and climate change adaptation measures

Based on consultations with stakeholders from the countries, a "Technical and economic report on further support to the **Regional Climate Adaptation Strategy in Central Asia**"⁵ was prepared, proposing structure and platforms for its implementation.

Kazakhstan continues implementing the Concept of Water Management System Development for 2024-2030 (PPRK No.66 of 05.02.2024), which aims to reduce water losses from 50% to 35%, expand the area under water-saving technologies to 1 Mha, and save approximately 10 bln m^3 of water. From March 3 to 5, a training workshop on Uzbekistan's

⁵ by the Collective Leadership Institute (CLI), with the support of GIZ

experience in developing and implementing water-saving systems was held in Tashkent, with the participation of Kazakhstani water experts.

On 26 March 2025, the Parliament of the Republic of Kazakhstan adopted the draft of the new **Water Code** and related legislative acts, which were then submitted to the President of Kazakhstan for signature.

Adoption of the new Water Code marks a significant step toward water security and sustainable development in Kazakhstan. By introducing stricter regulations on water use, advancing digitalization of the water sector, and implementing water conservation principles, the Code lays a solid foundation for the effective management of the country's water resources. The Water Code establishes clear obligations for water users to promote rational water use, minimize losses, and adopt water-saving technologies. Special water use permits will be granted only when accompanied by a phased plan of transition spanning no more than five years—to water recycling and/or reuse. The Code also governs the development and operation of process water supply systems in settlements to save drinking water. Additionally, it provides for state support to enterprises that apply the best available water technologies, with clearly defined criteria for selecting such technologies.

In the agricultural sector, water use plans and permitted water quantities for water users are being introduced, with mandatory specification of crop types, irrigated areas, and irrigation norms.

In Tajikistan, implementation of the "The National Water Strategy of the Republic of Tajikistan for the period up to 2040"⁶was discussed during the joint meeting of the Working Group on Integrated Water Resources Management (IWRM) and the Coordination Working Group on the Water Sector Reform Program of Tajikistan (Dushanbe, 6 February). Preparations are also underway for the High-Level International Conference on Glaciers' Preservation, scheduled for 29-31 May in Dushanbe.

Uzbekistan has set a goal to achieve annual water savings up to 2.5 bln m³ by 2025. This will be accomplished by concreting 1,000 km of irrigation canals and expanding the use of water-saving technologies to 1.6 Mha (Presidential Decree No. 16 of 30 January 2025 "On the State Program for the Implementation of the 2030 Uzbekistan Strategy –in the Year of Environmental Protection and Green Economy"). The 2020-2030 Water Sector Development Concept is continued to be implemented. According to the Concept, the share of concrete-lined canals is to be increased to 40% of the total length of irrigation network by 2025 to reduce water losses in irrigation systems.

On 31 January 2025, the draft Water Code of the Republic of Uzbekistan was adopted by the Legislative Chamber of the Oliy Majlis, and

⁶ adopted by PPRT No. 627 of 29.11.2024

subsequently approved by the Senate on 17 March 2025. The draft law, comprising 29 chapters and 165 articles, offers a comprehensive and systematized legal framework for regulating water relations. It defines the powers, responsibilities, and functions of the Cabinet of Ministers, relevant ministries and agencies, and local self-government bodies in the field of water governance. To promote transparency in water management and inclusive decision-making, it is envisaged to establish water councils. These councils will function as collegial and consultative bodies at the national and basin levels, and, where necessary, at the territorial level.

A thorough modernization of the water use system is planned. The requirements for getting special water use permits have been simplified, water use has been prioritized by economic sector, and new mechanisms for water distribution are adopted. The letter include: 1) allocation of water withdrawal quotas and conclusion of water supply contracts; 2) annual setting of water withdrawal limits; 3) reassignment of saved water. The terms of public-private partnerships in the field of water management, liability for violations of water diversion procedures and the key areas of international cooperation in the area of water relations have also been defined.

Uzbekistan is preparing to host the following events: (1) the First Samarkand Climate Forum "Central Asia Facing Global Climate Challenges: Consolidation for Shared Prosperity" (Samarkand, 4–5 April). A key outcome of the forum will be the adoption of the Regional concept "Global Climate Threats in Central Asia: Regional Concept of Green Development"; (2) the Global Youth Festival of Digital Green Initiatives (Aral Sea region, 15 May). The President has tasked the development of a "National Program for the Formation of a Green Finance System in the Republic of Uzbekistan" to ensure sustainable financing for decarbonization and climate adaptation projects⁷. Additionally, the "Climate-Resilient Integrated Water Resources Management in the Zarafshan River Basin" project (SDC, Ministry of Ecology, Environmental Protection and Climate Change of the Republic of Uzbekistan) was launched. — The project aims to strengthen resilience to climate change and improve water resources management.

SIC ICWC in cooperation with BWO Amu Darya and BWO Syr Darya conducts daily monitoring of the balance of all waters in the Amu Darya and Syr Darya River basins⁸; participated in discussion of the report "World Guidelines

⁷ Decree of the President of the Republic of Uzbekistan No. UP-16 dated January 30, 2025 "On the State Program for the Implementation of the 2030 Uzbekistan Strategy-in the Year of Environmental Protection and Green Economy"

⁸ Analytical reports are published in sections "Water Management Situation in the Amu Darya Basin," "Water Management Situation in the Syr Darya Basin," and in weekly information bulletin "Water Management, Irrigation and Ecology in the Countries of Eastern Europe, Caucasus and Central Asia (EECCA)," which is distributed to 77 recipients.

in a Changing Climate: Analysis of Climate and Security Trends" during the Brussels Dialogue on Climate Security (BDCD) (19-20 February).

4. Measures to address the consequences of the Aral Sea disaster

Kazakhstan is addressing the issues of socio-economic development in the Aral Sea region through several strategic frameworks, including: the Action Plan for the Implementation of the Concept for the Transition of the Republic of Kazakhstan to a Green Economy (2024–2030), the Kazakhstan Water Sector Development Concept (2024–2030), and the "Ecologically Oriented Development in the Aral Sea Region" (ECO ARAL) initiative. As part of these, efforts are made to increase water volume in the Northern Aral Sea (NAS) to 23.4 bln m3 by the end of 2025. Under the project "**Kokaral Dam Preservation and Syr Darya River Delta Restoration in the Aral District of Kyzylorda Province**," it is planned to reconstruct the Kokaral Dam, which separates NAS from the Large Aral Sea. In parallel, Kazakhstan is expanding **saxaul plantations** on the dried seabed of the Aral Sea, aiming to reach 1 to 1.1 Mha by 2025. Additionally, phyto-reclamation is ongoing over an area of 250,000 ha.

Turkmenistan continues implementing the National Programme of Turkmenistan for the Aral Sea (2021–2025), alongside the project "Conservation and Sustainable Management of Land Resources and High Nature Value Ecosystems in the Aral Sea Basin for Multiple Benefits" (UNDP/GEF).

The study on the modalities of the UN Special Program for the Aral Sea Basin (based on ESCAP resolution E/ESCAP/RES/79/8, "Consideration of the Modalities for the Establishment of the United Nations Special Programme for the Aral Sea Basin" / UN SPAS⁹) has been completed. As a result, four possible options have been proposed: (1) A multidimensional (umbrella) partnership between the Central Asian countries and the UN; (2) Synchronization of Special Program's activities with the renewed IFAS structure, particularly in fundraising and technology; (3) Integration of the Special Program's objectives with those of the Regional Climate Technology Center for Central Asia, currently being established in Ashgabat; (4) Establishment of the UN Special Program on Climate Resilience and Disasters in the Aral Sea Basin as a new SPECA working group or as a subgroup under the SPECA Working Group on Water, Energy, and Environment.

Uzbekistan has declared 2025 the Year of Environmental Protection and Green Economy. The country continues the nation-wide program "Yashil

⁹ 15-19 May 2023, Bangkok, Thailand, https://www.unescap.org/news/asia-pacific-countries-adopt-10-un-resolutions-reaffirming-commitments-protect-planet-and-its

Makon^{"10} which aims to establish 18 forest farms for seedling cultivation this year. Efforts will be boosted in breeding, alongside the development of seed laboratories, intensive experimental plots, and 'mother' plantations. Additionally, the "Yashil Olam" platform for purchasing seedlings will be launched.

SIC ICWC continues its work on (1) assessment of inflow from the Amu Darya River and collecting drains; (2) RS-based assessment of water surface, wetland and dried areas of the Large and Small/Northern Aral Sea, as well as water bodies of the Aral Sea region; (3) the project "Adaptation of a modern system for water and land resources monitoring and water balance (water requirement) modelling in the conditions of the Aral Sea region with a view of combating salinization and increasing land productivity", aimed at better water management in the Aral Sea Basin.

5. Automation of gauging stations and promotion of advanced information and communication technologies

Kazakhstan and Uzbekistan have approved the Terms of Reference (ToR) for the automation of gauging stations along the Syr Darya River¹¹. GIZ is currently completing internal procedures to prepare tender announcements.

The Tasqyn flood forecasting and modeling system has been put into commercial operation in Kazakhstan. Basin inspection staff and branches of "Kazvodkhoz" input real-time data daily into this system. Meanwhile, the National Water Information System (QazSu) is under development to digitalize water management and improve water use efficiency. In Kyzylorda province, a project on reconstruction of gauging stations and installation of automated water accounting systems along five canals totaling 231.95 km in length is ongoing. Additionally, design and estimate documentation is drafted for the automation of 16 main and inter-farm canals stretching to over 2,600 km, with implementation scheduled for 2025–2027. Automation is also planned for 78 canals in Turkistan province, with implementation timeframe of 2025–2027.

SIC ICWC, in collaboration with the World Bank Group and the Stockholm Environment Institute (SEI), organized a series of training sessions on the application of the WEAP (Water Evaluation and Planning) model as part

¹⁰ Presented at the UN High-Level Forum, "Her Land, Her Rights: Advancing Gender Equality and Land Restoration Goals," on the occasion of the World Day to Combat Desertification and Drought, 17 June 2023, in New York. The program aims to achieve up to 30% greening of urban and rural areas by 2030.

¹¹ Earlier, the countries identified 10 sites for the installation of automated water accounting systems. The overall Terms of Reference (ToR) for the project is currently developed by GIZ.

of the project "Water-Energy Nexus Systems Modelling". These trainings were conducted for specialists from countries in the region, focusing on the Syr Darya and Amu Darya River basins. The training covers various water use sectors, including domestic water supply, agriculture, hydropower, and environment.

SIC ICWC is prepared to support the riparian countries of Syr Darya River basin in conducting technical surveys to assess the needs for automation under the project "Regional mechanisms for low carbon, climate-resilient transformation of the energy, water, and land nexus in Central Asia."

6. Development of an integrated and mutually beneficial mechanism for water and energy co-operation in Central Asia

Kazakhstan continues working on a mechanism of water-energy cooperation in Central Asia, aiming at sound use of water and energy resources in the Aral Sea basin.

7. Regional cooperation and water diplomacy

On 28 January, a roundtable on the Kambarata-1 construction project was held in Tashkent, with the participation of ministers of energy from **Kazakhstan**, **Kyrgyzstan**, and **Uzbekistan**, as well as representatives of the World Bank.

Kazakhstan–Uzbekistan. During the 12th meeting of the Joint Working Group on enhanced bilateral water cooperation, **it was agreed that Uzbekistan** will deliver 16 bln m³ of water to **Kazakhstan** by 1 October 2025—1 bln m³ more than last year—and ensure stable water supply along the Dustlik canal during the 2025 irrigation season. The parties will also jointly carry out repair works of interstate canals to improve water delivery to agricultural users in Turkistan province of Kazakhstan and Jizzak province of Uzbekistan.

During the state visit of **Tajik** President Emomali Rahmon to **Kyrgyzstan** on 13 March, several bilateral documents were signed to enhance the **Kyrgyz**-**Tajik** cooperation. These included a Joint Statement; the Treaty between the Kyrgyz Republic and Tajikistan on the State Border; the Agreement between the Cabinet of Ministers of Kyrgyzstan and the Government of Tajikistan on ensuring access to water and energy facilities; and the Agreement on Agricultural Cooperation between the Ministry of Water Resources and Agriculture of the Kyrgyz Republic and the Ministry of Agriculture of Tajikistan. In the Joint Statement, the Heads of State specifically agreed to establish a Joint Tajik-Kyrgyz Water Commission. In Uzbekistan, preparations are underway for the International Scientific and Practical Conference titled "Water Diplomacy in Central Asia: Trust, Dialogue and Multilateral Cooperation for Sustainable Development" scheduled for April 10.

Regional events

- On 12-13 February, a **regional workshop on the outcomes of the third reporting exercise on SDG indicator 6.5.2** and sharing experience in using reporting as a tool for developing transboundary cooperation in Central Asia¹² was held. The workshop was organized by UNECE, International Water Assessment Center, GIZ and SIC ICWC.

– On March 11, the "High Level Policy Dialogue: Expanding Financing and Investment to Achieve Environmental Goals in Central Asia"¹³ took place in Tashkent. The event included the launch of the Partnership for Environmental Initiatives in Central Asia, initiated by the EBRD with the support from Germany and OECD to address regional environmental and climate change challenges¹⁴.

8. Capacity-building and scientific cooperation

In Kazakhstan, advanced training courses for specialists and managers from the branches of RSE "Kazvodkhoz" in Almaty, Jetisu, Jambyl, Turkistan, and Kyzylorda provinces on optimization of water use and ensuring safety of hydraulic facilities were held: from 31 March to 1 April 2025 and 2-3 April, two-day trainings for specialists of RSE "Kazvodkhoz" on Module 1: Water-saving and addressing unproductive water losses by water management organizations and water users; April 4, 2025 for heads of branches of RSE "Kazvodkhoz" on Module 2: Law and statutory instruments, and the rules for the operation and maintenance of hydraulic structures: control, supervision and monitoring for safe operations. The training was conducted by LLP "KazNIIVH" with the support of SIC ICWC as part of the project "Regional mechanisms for the low-carbon, climate resilient transformation of the energy-water-land Nexus in Central Asia".

Turkmenistan is implementing the 2024-2052Strategy for Science Development and the related Action Plan for 2024-2028 (Presidential decree of 24.09.2024).

¹² organized by IWAC in cooperation with UNECE, UNESCO and SIC ICWC with the support of GIZ ¹³ Organized by MEEPCC RUz, BMUV, EBRD and OECD

¹⁴ a fund managed by the EBRD to support environmental investments and nature-positive business strategies

In Uzbekistan, Water Workerchools¹⁵ are actively functioning in all regions of the country to build capacities and maintain scientific cooperation.

10. Progress in preparation of the Regional Forum during the High-Level International Conference on Glaciers' Preservation (Dushanbe, 29-31 May)

SIC ICWC has developed a draft concept and agenda of the Regional Forum titled "Enhancing Transboundary Cooperation for Water Sustainability and Climate Resilience in Glacier-Dependent Basins of Central Asia", scheduled to be held on 29 May as part of the High-Level International Conference on Glaciers' Preservation in Dushanbe.

CROMO-Adapt and Blue Peace projects funded by SDC, the project "Regional mechanisms for low carbon, climate resilient transformation of the energy, water, and land nexus in Central Asia" implemented by OECD, UNECE and SIC ICWC, funded by the German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection as well as the World Bank and the GIZ Green Central Asia Program (as part of a research project carried out by SIC ICWC) confirmed their support to the Regional Forum as potential co-organizers.

It is planned to organize four sessions at the Regional Forum:

Session 1: Key linkages between water, food and energy security in glacier-dependent basins of Central Asia.

Session 2: Strengthening transboundary governance and policy coordination.

Session 3: Science-Policy Interface for WEFE Nexus.

Session 4: Climate-Resilient Solutions and Innovative Financing for WEFE Nexus

¹⁵ Established in May 2023 on the initiative of the President of Uzbekistan to improve the water use culture and promote water-saving technologies.

Analysis of water management situation in the Syr Darya and Amu Darya River Basins over the non-growing season 2024-2025¹⁶

1 Syr Darya River basin

During the non-growing season (October 2024-March 2025), the actual inflow to the upper reservoirs of the Syr Darya River basin (Toktogul, Andijan, Charvak) was 6.12 km³ or 119 % of the forecast.

Inflow to the Toktogul reservoir was 3.71 km^3 or 124% of the forecast. Inflow to the Andijan reservoir was less by 1% that it was expected and inflow to the Charvak reservoir was more by 20%.

The total water releases from the three upper reservoirs amounted to 11.53 km^3 , which is by 2% more than the forecast schedule of BWO Syr Darya.

The total lateral inflow in the section from the Toktogul reservoir to the Shardara reservoir, including discharge from the Karadarya and Chirchik rivers, amounted to 11.32 km³.

By the end of non-growing season the total water volume in upper reservoirs amounted to 10.31 km^3 , including: Toktogul reservoir - 8.45 km^3 or 105 % of the plan; Andijan reservoir - 1.2 km^3 or 107 % of the plan; Charvak reservoir - 0.66 km^3 or 124 % of the plan. The Toktogul reservoir was drawn down by 4.59 km^3 , the Charvak reservoir, by 1.14 km^3 , while the Andijan reservoir was filled by 0.21 km^3 .

Inflow to the Bakhri Tojik reservoir was 12.32 km^3 , which is 1.04 km^3 more than the schedule of BWO Syr Darya. Water releases from the reservoir into the river were 11.13 km^3 , which is 1.23 km^3 more than the schedule. The reservoir was filled up to $3.5 \text{ km}^{3.}$

The total water withdrawal from the Naryn and Syr Darya rivers amounted to 3.93 km^3 , including: Kyrgyz Republic -0.05 km^3 ; Republic of Tajikistan -0.06 km^3 ; Republic of Kazakhstan (through the Dostlik canal) -0.49 km^3 ; Republic of Uzbekistan -3.33 km^3 (Table 1.1).

During the non-growing season, the inflow to the Shardara reservoir amounted to 13.36 km^3 , which is 2.42 km³ more than scheduled by BWO Syr Darya. By the end of the season the reservoir was filled up to 4.56 km^3 , which is 88% of the plan. Discharge from the Shardara reservoir amounted to 8.71 km³ or

¹⁶ Prepared in SIC ICWC. Authors: A. Nazarii, A. Sorokin, I. Ergashev

129% of the forecast, including discharge into the river - 6.76 km^3 , water diversion to the Kyzylkum canal - 0.26 km^3 .

Water use in the Syr Darya lower reaches (water withdrawal, losses) amounted to 4.97 km^3 (Table 1.2). Water supply to the Aral Sea was 1.79 km^3 (107 % of the expected quantity) according to the the Committee for Water Regulation, Protection and Use at the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan

Table 1.2 shows the river water balance and Table 1.3 shows the reservoir water balance.

Ma	Water user	Water vo	lume, km ³	Water availability, %	
N⁰		Limit/ schedule	Actual	Season	
1	Total water withdrawal	4.25	3.92	92	
2	By country:				
	Kyrgyz Republic	0.05	0.05	102	
	Republic of Uzbekistan	3.34	3.33	100	
	Republic of Tajikistan	0.37	0.06	15	
	Republic of Kazakhstan	0.49	0.49	100	
3	By river reach:				
3.1	Toktogul reservoir – Uchkurgan hydroscheme	1.38	1.33	97	
	Including:				
	Kyrgyz Republic	0.04	0.04	94	
	Republic of Tajikistan	0.08	0.04	52	
	Republic of Uzbekistan	1.25	1.25	100	
3.2	Uchkurgan hydroscheme - Bakhri Tojik hydroscheme	0.25	0.19	77	
	Including:				
	Kyrgyz Republic	0.01	0.01	143	
	Republic of Tajikistan	0.07	0.00	2	
	Republic of Uzbekistan	0.17	0.18	104	
3.3	Bakhri Tojik hydroscheme – Shardara reservoir	2.62	2.41	92	
	Including:				
	Republic of Kazakhstan	0.49	0.49	100	
	Republic of Tajikistan	0.21	0.01	5	
	Republic of Uzbekistan	1.92	1.91	99	

Water use by the Syr Darya River basin countries (river reach up to Shardara reservoir), non-growing season 2024-2025

63

		Water volume, km ³			
№	Balance item	Forecast/ plan	Actual	Deviation (actual - plan)	
1	Inflow to the Toktogul reservoir	2.99	3.71	0.71	
2	Lateral inflow in the Toktogul reservoir – Shardara reservoir reach (+)	10.44	11.32	0.88	
	Including:				
2.1	Disharge from the Karadarya river	1.35	1.78	0.42	
2.2	Discharge from the Chirchik river	1.65	1.62	-0.02	
2.3	Lateral inflow from CDN and small rivers	7.44	7.91	0.48	
3	Flow regulation by reservoirs: recharge (+) or diversion of flow (-)	3.62	3.36	-0.26	
	Including:				
3.1	Toktogul reservoir	5.00	4.55	-0.45	
3.2	Bakhri Tojik reservoir	-1.38	-1.19	0.19	
4	Regulated flow (1+2+3)	17.05	18.39	1.34	
5	Water diversion in the Toktogul -Shardara reach (-)	-4.25	-3.92	0.32	
6	Inflow to the Shardara reservoir	10.94	13.36	2.42	
7	Water release from Shardara reservoir into the river	6.42	6.76	0.35	
8	Water use in the reach Shardara – Aral*	4.75	4.97	0.23	
9	Water supply to Aral (Karaterent gauging station)**	1.67	1.79	0.12	

River water balance of the Syr Darya River, non-growing season 2024-2025

*Water withdrawal plus in-stream losses minus lateral inflow plus filling of Koksaray reservoir

**According to the data of Committee for Water Regulation, Protection and Use at the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan

Reservoior water balance in the Syr Darya River basin, the non-growing season 2024- 2025

		Water volume, km ³		
№	Balance item	forecast/ plan	actual	Deviation (actual - plan)
1	Toktogul reservoir			
1.1	Inflow to the reservoir	2.99	3.71	0.71
1.2	Water volume:			
	- beginning of the season (1 October 2024)	13.04	13.04	0.00
	- end of the season (1 April 2025)	8.03	8.45	0.42
1.3	Water releases	8.00	8.26	0.26
1.5	Flow regulation: recharge (+) or diversion of flow (-)	5.00	4.55	-0.45
2	Andijan reservoir			
2.1	Inflow to the reservoir	0.82	0.81	-0.01
2.2	Water volume:			
	- beginning of the season (1 October 2024)	0.99	0.99	0
	- end of the season (1 April 2025)	1.11	1.20	0.08
2.3	Water releases	0.69	0.58	-0.11
2.5	Flow regulation: recharge (+) or diversion of flow (-)	-0.13	-0.23	-0.10
3	Charvak reservoir			
3.1	Inflow to the Charvak reservoir	1.34	1.60	0.26
3.2	Water volume:			
	- beginning of the season (1 October 2024)	1.81	1.81	0
	- end of the season (1 April 2025)	0.53	0.66	0.13
3.3	Water releases	2.63	2.69	0.05
3.5	Flow regulation: recharge (+) or diversion of flow (-)	1.29	1.08	-0.21
4	Bakhri Tojik reservoir			
4.1	Inflow to the reservoir	11.29	12.32	1.04
4.2	Lateral inflow	0.35	0.28	-0.07
4.3	Water volume:			
	- beginning of the season (1 October 2024)	1.72	1.72	0.00
	- end of the season (1 April 2025)	3.45	3.50	0.05
4.4	Water releases from reservoir	10.01	11.16	1.15
	Including:			

	Balance item	Water volume, km ³			
№		forecast/ plan	actual	Deviation (actual - plan)	
	- water releases into the river	9.90	11.13	1.23	
	- water diversion from the reservoir	0.11	0.03	-0.08	
4.6	Flow regulation: recharge (+) or diversion of flow (-)	-1.38	-1.19	0.19	
5	Shardara reservoir				
5.1	Inflow to the reservoir	10.94	13.36	2.42	
5.2	Lateral inflow	0.00	0.00	0.00	
5.3	Water volume:				
	- beginning of the season (1 October 2024)	1.12	1.12	0.00	
	- end of the season (1 April 2025)	5.18	4.56	-0.61	
5.4	Water releases	6.73	8.71	1.98	
	Including:				
	- discharge into Arnasay	0.00	1.69	1.69	
	- water releases into the river	6.42	6.76	0.35	
	- water diversion from the reservoir	0.31	0.26	-0.05	
5.6	Flow regulation: recharge (+) or diversion of flow (-)	-4.19	-6.59	-2.41	

2 Amu Darya River basin

The actual available water in the Amu Darya River at "nominal Kerki" g/s (upstream of water intake to Garagumdarya) was 14.55 km³, which is 3.97 km³ more than forecast (Table 2.2).

Inflow to Nurek dam amounted to 4.42 km^3 (120% of the forecast), while water releases were 8.13 km³ (105% km³ of BWO Amu Darya schedule). Surplus to river flow through drawdown of the Nurek reservoir amounted to 3.71 km³. By the end of the season, the reservoir was drawndown to 6.18 km³ (Table 2.3).

The water accumulation plan for the non-growing season was fulfilled in the reservoirs of the Tyuamuyun hydroscheme (TMHS). By 1 April, the actual water volume was more than planned one by 0.97 km^3 and amounted to 3.81 km^3 . The river flow at Darganata section amounted to 8.26 km^3 (145 % of the forecast). Water releases from TMHS exceeded by 1.14 km³ the amount scheduled by BWO and totaled 7.14 km³.

The allocated water withdrawal limit for the Amu Darya River basin was covered by 93%. The total water withdrawal was 14.71 km³, including 12.1 km³ – downstream of Kerki g/s (starting from water intake to Garagumdarya). Water supply was 79% in Tajikistan, 97% in Turkmenistan and 95% in Uzbekistan (Table 2.1).

The allocated limit of sanitary-environmental flow for canals in the Amu Darya River lower reaches was used by 98%, and 0.78 km³ of water were supplied. According to UzHydromet data, 1.56 km³ of river water reached the Aral Sea region based on records at Samanbay g/s and of collector-drainage water inflow, which was 74% of the plan.

Table 2.2 shows the data on river water balance and Table 2.3 on reservoir water balance.

Indicators of available water supply for riparian countries of the Amu Darya River Basin, non-growing season 2024-2025

N⁰	Water user	Water vo	lume, km ³	Water availability, %	
		Limit	Actual	Season	
1	Total water withdrawal	15.79	14.71	93	
2	Breakdown by states:				
	Kyrgyz Republic	-	-	-	
	Republic of Tajikistan	2.94	2.33	79	
	Turkmenistan	6.50	6.33	97	
	Republic of Uzbekistan	6.35	6.05	95	
3	Downstream of nominal Kerki g/s	12.48	12.10	97	
	Including:				
	Turkmenistan	6.50	6.33	97	
	Republic of Uzbekistan	5.98	5.77	96	
4	By river reach:				
4.1	Upper reaches	3.31	2.61	79	
	Including:				
	Kyrgyz Republic	-	-	-	
	Republic of Tajikistan	2.94	2.33	79	
	Republic of Uzbekistan, Syrkhandarya province	0.37	0.28	75	
4.2	Middle reaches	8.35	7.97	95	
	Including:				
	Turkmenistan	5.10	4.954	97	
	Republic of Uzbekistan	3.25	3.01	93	
4.3	Lower reaches	4.13	4.13	100	
	Including:				
	Turkmenistan	1.40	1.380	99	
	Republic of Uzbekistan	2.73	2.75	101	
5	Sanitary-environmental flow to canals in the lower reaches	0.80	0.78	98	
	Including:				
	Turkmenistan	0.15	0.15	100	
	Republic of Uzbekistan	0.65	0.63	97	
6	Water supply to the Aral Sea region	2.10	1.56	74	

	Water volume, km ³		Deviation
Balance item	forecast/ plan	actual	(actual- plan)
1. Water content in the Amu Darya River – non- regulated flow at nominal Kerki station*	10.58	14.55	3.97
2. Flow regulation by Nurek reservoir: recharge(+) or diversion of flow (-)	4.08	3.71	-0.37
3. Water withdrawal in middle reaches (-)	-8.35	-7.97	0.38
4. Return flow of CDW in middle reaches (+)	0.83	0.93	0.10
5. River flow at Darganata g/s	5.69	8.26	2.56
6. Water releases from TMHS (including diversion from the reservoir)	5.99	7.14	1.15
7. Water withdrawal in lower reaches, including diversion from TMHS (-)	-4.13	-4.13	0.00
8. Emergency water releases into canals (-)	-0.80	-0.78	0.02
9. Flow of the Amu Darya river at Samanbay g/s	0.90	0.96	0.06

River water balance of the Amu Darya River, non-growing season 2024-2025

* Non-regulated flow of the Amu Darya River excluding upstream water withdrawal (Tajikistan, Surkhandarya province).

	Water vo	Deviation		
Balance item	forecast/	actual	(actual-	
	plan	uotuur	plan)	
1 Nurek reservoir				
2.1 Inflow to the reservoir	3.70	4.42	0.73	
2.2 Water volume in reservoir:				
-beginning of the season (1 October 2024)	10.57	10.57	0.00	
- end of the season (1 April 2025)	6.11	6.18	0.07	
2.3 Water releases from reservoir	7.77	8.13	0.36	
2.4 Flow regulation: recharge (+) or diversion of flow (-)	4.07	3.71	-0.36	
2 Reservoirs of TMHS				
2.1 River flow at Darganata g/s	5.69	8.26	2.56	
2.2 Water volume in reservoirs:				
-beginning of the season (1 October 2024)	4.00	4.00	0.00	
- end of the season (1 April 2025)	2.83	3.81	0.97	
2.3 Water releases from hydroscheme	6.0	7.14	1.14	
Including:				
water releases into the river	4.23	5.04	0.81	
water diversion	1.77	2.10	0.34	
2.4 Flow regulation: recharge (+) or diversion of flow (-)	0.30	-3.22	-3.52	

Reservoir water balance in the Amu Darya River basin, non-growing season 2024-2025

Events

Water Convention Implementation Committee met in Geneva¹⁷

The Implementation Committee under the Water Convention convened on 7-8 April 2025 in Geneva, Switzerland, reaffirming its commitment to facilitate and support the implementation of the United Nations Water Convention.

The new composition of the Committee reflects the global character of the Convention: its members come from Africa, Europe, Central Asia, Middle East and Latin America.

The Committee, composed of nine independent experts serving in their personal capacity, works in a non-confrontational, transparent, and cooperative manner - true to the collaborative spirit of the Convention, to prevent water-related conflicts.

The Committee elected Dinara Ziganshina, SIC ICWC Director, as Chair and Makane Moïse Mbengue as Vice Chair for the period 2025-2027.

During the recent meeting, the Committee held consultations with Montenegro and Albania on the progress they made in implementing the Committee's legal and technical advice regarding the transboundary Cijevna/Cem River.

Additionally, the secretariat shared future steps in the implementation of the "Cross-sectoral cooperation in transboundary basins in the Western Balkans" project, funded by Italy, which includes efforts to strengthen groundwater monitoring in the Cijevna/Cem River basin.

¹⁷ Source: https://www.linkedin.com/posts/water-convention-protocol-on-waterhealth_waterconvention-transboundarywater-sustainabledevelopment-activity-7315723918806245376-d6hQ

2nd Meeting of Inter-Institutional Working Group on Tailings Safety and Prevention of Water Pollution

On 9 April 2025, the 2nd Inter-Institutional Working Group (IIWG) meeting on tailings safety and the prevention of water pollution was held in Tashkent, Uzbekistan.

The meeting took place as part of the project "Strengthening action in Uzbekistan on water and sanitation and protection of water resources from accidental water pollution in the face of climate change", implemented by the United Nations Economic Commission for Europe (UNECE) and financed by the Swiss Agency for Development and Cooperation (SDC). The first IIWG meeting was held on 24 September 2024.

The 2nd meeting of the Inter-Institutional Working Group (IIWG) aims to achieve the following objectives:

• To review, discuss and approve the roadmap for UzbekistanB[™]s accession to the UNECE Industrial Accidents Convention.

- To consider, discuss and approve the framework for the draft law on accession to the Convention.
- To enhance understanding of the Industrial Accidents Convention among stakeholders.
- To review progress in assessing the baseline situation of water, sanitation, hygiene and health in Uzbekistan in the target areas covered by Article 6 of the UNECE-WHO /Europe Protocol on Water and Health and to discuss priorities for setting water, sanitation, hygiene and health targets.
- To discuss the legal obligations and requirements of Uzbekistan as a Party to the Protocol on Water and Health.
- To agree on next steps to develop the framework for a Joint Contingency Plan for the Syr Darya River Basin and other project activities.
- To agree on the next steps for developing a Joint Contingency Plan for the Syr Darya River Basin and to coordinate other project activities.
- To discuss and agree the IWG work plan for the second half of 2025, including project implementation guidance, timelines and next steps.
- To strengthen the capacity of all relevant stakeholders dealing with industrial safety, disaster risk reduction, water, sanitation, and enhance intersectoral cooperation among all stakeholders.

SIC ICWC was represented by Zylfiya Yarrulina. She presented an overview of progress in the baseline situation of water, sanitation, hygiene and health in Uzbekistan in the target areas covered by Article 6 of the UNECE-WHO/Europe Protocol on Water and Health.

International Scientific and Practical Conference "Water Diplomacy in Central Asia: Trust, Dialogue, and Multilateral Cooperation for Sustainable Development"

The International Scientific-Practical Conference titled "Water Diplomacy in Central Asia: Trust, Dialogue and Multilateral Cooperation for Sustainable Development" was held in Tashkent on 10 April 2025.

The Conference was organized by the Institute for Strategic and Regional Studies under the President of Uzbekistan in partnership with the Ministry of Water Management of Uzbekistan, the National Research University TIIAME, and SIC ICWC, with the support from the Friedrich Ebert Foundation, the International Water Management Institute, the Swiss Agency for Development and Cooperation, and the German Society for International Cooperation.

This unique platform brought together over 100 participants from more than 10 countries. Among the participants were the leading experts from the Aral Sea basin countries, including experts from strategic think tanks and water management organizations of Central Asia, Afghanistan, Asia, Europe, the CIS, etc.

The Conference was structured around two sessions:

- Water challenges, achievements and critical tasks: Role of water diplomacy
- Best practices and effective water diplomacy: International community's contribution to water cooperation in Central Asia

Director of SIC ICWC Dinara Ziganshina moderated the second session of the Conference.

Participants had discussions on water diplomacy, which recently had become a key tool for promotion of effective water cooperation in Central Asia.

Editorial Board:

D. Ziganshina I. Beglov Sh. Muminov A. Nazariy A.Galystyan

Translation:

O. Usmanova G. Yuldasheva

Layout and design:

I.Beglov A. Degtyareva.

Editorial office:

SIC ICWC Karasu-4, B 11-A, Tashkent 100 187, Republic of Uzbekistan

sic.icwc-aral.uz