Interstate Commission for Water Coordination of Central Asia

BULLETIN № 1 (90)

March 2022

TABLE OF CONTENTS

MINUTES OF THE 81 st MEETING OF THE INTERSTATE COMMISSION FOR WATER COORDINATION (ICWC) OF THE REPUBLIC OF KAZAKHSTAN, KYRGYZ REPUBLIC, REPUBLIC OF TAJIKISTAN, TURKMENISTAN AND REPUBLIC OF UZBEKISTAN
RESULTS OF THE USE OF WATER WITHDRAWAL LIMITS AND OPERATION REGIMES OF THE RESERVOIR CASCADES IN THE AMU DARYA AND SYR DARYA RIVER BASINS OVER THE 2021 GROWING SEASON
APPROVAL OF WATER WITHDRAWAL LIMITS AND OPERATION REGIMES OF THE RESERVOIR CASCADES DURING THE GROWING SEASON 2021 IN THE AMU DARYA AND SYR DARYA RIVER BASINS
FOLLOW UP ON PROPOSALS AND INITIATIVES VOICED AT THE SUMMIT OF THE HEADS OF IFAS FOUNDER-STATES IN THE CITY OF TURKMENBASHI
DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA 1. ACTIVITIES OF THE EXECUTIVE COMMITTEE OF THE INTERNATIONAL FUND FOR SAVING THE ARAL FOR THE REPORTING PERIOD
DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA 2. PROGRESS OF THE ARAL SEA BASIN ACTION PROGRAM (ASBP-4)
DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA 3. ON ACTIVITIES OF THE WORKING GROUP FOR INSTITUTIONAL AND LEGAL IMPROVEMENT OF IFAS
DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA 4. ON PREPARATION TO THE 9TH WORLD WATER FORUM "WATER SECURITY FOR PEACE AND DEVELOPMENT"

DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA	
5. ON IMPLEMENTATION OF THE CENTRAL ASIA HYDROMETEOROLOGY MODERNIZATION PROJECT (CAHMP)	59
	50
DECISION OF THE BOARD OF THE INTERNATIONAL FUND F	
OR SAVING THE ARAL SEA	
6. ON IFAS PARTICIPATION IN THE SECOND HIGH-LEVEL CONFERENCE	
ON THE INTERNATIONAL DECADE OF ACTION "WATER FOR SUSTAINABLE DEVELOPMENT", 2018-2028. "CATALYZING WATER ACTION AND	
PARTNERSHIPS AT LOCAL, NATIONAL, REGIONAL AND GLOBAL	
LEVELS" 6-9 JUNE 2022, DUSHANBE, REPUBLIC OF TAJIKISTAN	59
DECISION OF THE BOARD OF THE INTERNATIONAL FUND	
FOR SAVING THE ARAL SEA	
7. ON APPROVAL OF THE REGIONAL ENVIRONMENTAL PROGRAM	
FOR SUSTAINABLE DEVELOPMENT IN CENTRAL ASIA	60
DECISION OF THE BOARD OF THE INTERNATIONAL FUND	
FOR SAVING THE ARAL SEA	
8. ABOUT AGENDA OF THE NEXT MEETING OF THE IFAS	•
EXECUTIVE BOARD	61

MINUTES OF THE 81st MEETING OF THE INTERSTATE COMMISSION FOR WATER COORDINATION (ICWC) OF THE REPUBLIC OF KAZAKHSTAN, KYRGYZ REPUBLIC, REPUBLIC OF TAJIKISTAN, TURKMENISTAN AND REPUBLIC OF UZBEKISTAN

December 7, 2021	(video meeting)
Chairman:	
Khamraev Shavkat	Minister of Water Management, Republic of Uzbekistan
ICWC members:	
Kozhaniyazov Serik	Vice Minister of Ecology, Geology and Natural Resources, Republic of Kazakhstan
Shoimzoda Djamshed Shodi	First Deputy Minister of Energy and Water Resources, Republic of Tajikistan
Bayjanov Gyuizgeldi	Chairman of State Committee of Water Economy of Turkmenistan
ICWC executive bodies:	
Nazarov Umar	Head, ICWC Secretariat
Makhramov Makhmud	Head, BWO Amu Darya
Kholkhuzhaev Odil	Head, BWO Syr Darya
Ziganshina Dinara	Acting Director, Scientific Information Center (SIC) of ICWC
Invited:	
Republic of Kazakhstan	
Zhakanbaev Arsen	Director, Department of Transboundary Rivers, Ministry of Ecology, Geology and Natural Resources

Sharip Daniyar	Head of Transboundary Rivers Department of Transboundary Rivers Department, Ministry of Ecology, Geology and Natural Resources
Sadvakasov Erkesh	Advisor to the Chairman of the Committee on Water Resources, Ministry of Ecology, Geology and Natural Resources
Duzbaeva Kalamkas	Head of Transboundary Water Administration at the International Treaty Department, Ministry of Ecology, Geology and Natural Resources
Sadvakasov Erlan	Acting Director-General of RSE "Kazvodkhoz"
Republic of Tajikistan	
Abdurazokzoda Daler Abdukhalok	Head, Department of Water and Energy Policy, Science and Technology Development, Ministry of Energy and Water Resources
Mulloev Maruf	Chief Office of Water and Energy policy, Science and Technology Development, Ministry of Energy and Water Resources
Turkmenistan	
Paschyev Yanov Durdyevich	Head, Water Use Division, State Committee for Water Management
Charyev Saparmurad	Chief expert, Division of digital technologies and information security, State Committee for Water Management
Republic of Uzbekistan	
Batirov Shavkat	Head of International Relations and Transboundary Water Affairs Department, Ministry of Water
Tashpulatov Abduvoris	Management Deputy Head, Department of Water Resources and Water Use, Ministry of Water Management

Agenda of the 81st ICWC meeting

1. Results of the use of water withdrawal limits and operation of the reservoir cascades in the Syr Darya and Amu Darya River basins during the growing season 2021.

2. Approval of the country water withdrawal limits and operation regimes of the reservoir cascades in the Syr Darya and Amu Darya River basins for the non-growing season 2021-2022.

3. Follow up on proposals and initiatives voiced at the Summit of the Heads of IFAS founder-states in the city of Turkmenbashi.

4. Negotiating on sanitary flow along river courses in the Syr Darya River Basin (proposal of Kazakhstan).

5. Additional matters: organization of events on the occasion of the ICWC 30th anniversary in 2022.

6. Agenda and venue of the regular 82^{nd} meeting of ICWC.

Decision on the first item:

1. Take into account the reports of BWO Amu Darya and BWO Syr Darya on the results of the growing season 2021 in the Syr Darya and Amu Darya River basins.

2. BWO Syr Darya should submit to the Kazakh and Tajik parties a detailed calculation based on the results of the growing season for identifying inconsistencies in inflow to the Shardara reservoir in the "Bakhri Tochik - Shardara" reaches.

Decision on the second item:

1. Approve the limits of country water withdrawals in Amu Darya and Syr Darya basins for the non-growing season 2021-2022 (Appendices 1 and 2).

2. Take into account the proposed by BWOs forecast operation regimes of reservoir cascades in Amu Darya (Appendix 3) and Syr Darya (Appendix 4) basins for the non-growing season 2021-2022.

3. BWO "Syr Darya" to provide the Kazakh side a detailed calculation explaining why, given that the forecast of water discharge from "Bahri Tochik"

at the beginning of December was 100% correct, the forecast of inflow to the Shardara reservoir for the same period of time was not correct and, in fact, the inflow was 628 Mm³ less than the forecast.

Decision on the third item:

1. Take note of work done by ICWC bodies as a follow-up to proposals and initiatives put forward in Turkmenbashi at the Summit of the Heads of IFAS founder-states on 24 August 2018.

Decision on the fourth item:

1. The Kazakh side to provide ICWC members with additional information on the need to carry out work on determination of sanitary flow along the river courses in the Syr Darya in order to coordinate it with the relevant agencies of the countries.

Decision on the fifth item:

1. Take into account the draft Concept presented by SIC ICWC on organization of events on the occasion of 30th anniversary of the Interstate Commission for Water Coordination of Central Asia.

2. Establish an organizing committee for preparation and organization of the anniversary events consisting of two representatives from each country authorized by ICWC members and heads of ICWC executive bodies. The Organizing Committee is to approve the Concept and ensure due preparation and organization of the events.

3. Charge SIC ICWC to organize work of the Organizing Committee and reach agreement on the venue and time of the anniversary events with ICWC members.

4. The Parties support the Kazakh side's proposal to nominate ICWC candidates for training at the German-Kazakh University in Almaty, as well as to work out with donors and international financing organizations the issue of financing the resumption of training courses and exchanges between the Parties' experts.

Decision on the sixth item:

1. Hold the next 82nd ICWC meeting in Turkestan city, Republic of Kazakhstan combined with the 30th ICWC anniversary. The date of the regular ICWC meeting should be agreed in working order.

2. Invite Chairman of the Executive Committee of IFAS to participate in ICWC meetings.

3. Propose the following agenda for the 82nd ICWC meeting:

1) Results of the use of water withdrawal limits and operation of the reservoir cascades in the Syr Darya and Amu Darya River basins during the non-growing season 2021-2022.

2) Approval of the country water withdrawal limits and operation regimes of the reservoir cascades in the Syr Darya and Amu Darya River basins for the growing season 2022.

3) Follow up on proposals and initiatives voiced at the Summit of the Heads of IFAS founder-states in the city of Turkmenbashi.

4) Additional matters;

5) Agenda and venue of the regular 83rd ICWC meeting.

Republic of Kazakhstan	S.S. Kozhaniyazov
Kyrgyz Republic	
Republic of Tajikistan	D.Sh.Shoimzoda
Turkmenistan	G.N. Baidjanov
Republic of Uzbekistan	Sh.R.Khamraev

Appendix 1

Limits of water withdrawal from the Amu Darya River and water supply to the river delta and the Aral Sea for the non-growing season 2021-2022

	Water withdrawal limits, mcm				
River basin, state	Total annual (1.10.21-1.10.22)	Including non- growing season (1.10.21-1.04.22)			
Total withdrawal from the Amu Darya River	55,407	15,734			
of which:					
Republic of Tajikistan	9,837	2,884			
Republic of Uzbekistan	1,570	370			
From the Amu Darya River to the nominal Kerki gauging station	44,000	12,480			
Turkmenistan	22,000	6,500			
Republic of Uzbekistan	22,000	5,980			
Plus:					
- water supply to the river delta and Aral Sea, including irrigation water and CDW	4,200	2,100			
- discharge of sanitary and environmental flow into irrigation systems:	800	800			
Dashoguz province	150	150			
Khorezm province	150	150			
Republic of Karakalpakstan	500	500			

Appendix 2

Water-user state	By request, mcm
Republic of Kazakhstan (Dustlik canal)	454
Kyrgyz Republic	47
Republic of Tajikistan	365
Republic of Uzbekistan	3,347
Total:	4,213

Limits of water withdrawal by state in the Syr Darya River Basin

Appendix 3

Numely measured	Nurek reservoir unit		Actual		Forecast				
Nulek leservoir	um	Х	XI	XII	Ι	II	III	total	
Volume: beginning of the period	mcm	10570	10469	9915	8918	7840	7008	10570	
Inflow to the	m3/s	339	248	230	180	180	205		
reservoir	mcm	909	644	616	482	435	548	3634	
Water releases	m3/s	381	436	563	545	461	432		
from the reservoir	mcm	1019	1130	1508	1461	1115	1158	7390	
Volume: end of the period	mcm	10469	9915	8918	7840	7008	6215	6215	
Accumulation (+) drawdown (-)	mcm	-101	-554	-997	-1078	-832	-793	-4355	

Forecast operation regimes of Nurek and Tuyamuyun reservoirs (October 2021 – March 2022)

Tuyamuyun	unit	Actual Forecast					total	
reservoir	uiiit	Х	XI	XII	Ι	II	III	total
Volume: beginning of the period	mcm	2370	2351	2615	3150	3617	3112	2370
Inflow to the	m3/s	476	250	323	437	422	456	
reservoir	mcm	1276	647	866	1171	1022	1222	6205
Water releases	m3/s	483	148	124	263	631	574	
from the reservoir	mcm	1295	384	331	704	1527	1536	5777
Volume: end of the period	mcm	2351	2615	3150	3617	3112	2798	2798
Accumulation (+) drawdown (-)	mcm	-19	263	535	468	-505	-314	428

Appendix 4

Forecast operation schedule of Naryn-Syr Darya reservoir cascade for 1 October 2021 to 31 March 2022

		October	November	December	January	February	March	Total mcm
Toktogul reservoir								
Inflow to the reservoir	m3/s	234	181	168	159	158	166	
	mcm	628	468	450	426	382	445	2798
Volume: beginning of the season	mcm	12304	11936	11024	9837	8334	7226	
end of the season	mcm	11936	11024	9837	8334	7226	6342	
Water releases from reservoir	m3/s	369	532	611	720	616	493	
	mcm	988	1378	1637	1930	1491	1320	8745
for domestic needs of the	m3/s	474	578	700	795	695	650	
Kyrgyz Republic (CDC "Energiya" data)	mcm	1270	1499	1875	2129	1681	1741	10195
Power flows to the Kyrgyz Republic from other	r republics, in v	vater equiva	lent:					
Lehalviston	m3/s	29					82	
Uzbekistan	mcm	78					220	298
	m3/s	31	23	30	30	35	35	
Kazakhstan	mcm	83	59	79	79	86	94	480
The demonstrate of	m3/s	45	24	59	45	43	40	
Turkmenistan	mcm	120	61	159	121	105	107	672
Bakhri Tochik reservoir	·		•		-	· · ·		•
Inflow to the reservoir	m3/s	421	621	899	928	828	595	
(Akdjar GS)	mcm	1129	1609	2409	2485	2004	1592	11228

		October	November	December	January	February	March	Total mcm
Volume: beginning of the season	mcm	1587	2426	2943	3190	3421	3432	
end of the season	mcm	2426	2943	3190	3421	3432	3430	
Water releases from reservoir	m3/s	136	487	820	860	840	600	
	mcm	364	1263	2196	2303	2032	1607	9765
Shardara reservoir								
Inflow to the reservoir	m3/s	145	332	937	943	923	681	
	mcm	388	861	2510	2527	2232	1824	10341
Volume: beginning of the season	mcm	667	881	1222	2175	3071	4127	
end of the season	mcm	881	1222	2175	3071	4127	5199	
Water releases from reservoir	m3/s	44	192	576	600	481	270	
	mcm	118	498	1543	1607	1164	723	5653
Water supply to the Aral Sea	m3/s	0,5	4	50	56	183	141	
	mcm	1	10	134	151	442	377	1115
Charvak reservoir								
Inflow to the reservoir	m3/s	76	67	74	65	65	94	
(4 rivers in total)	mcm	204	174	198	175	156	252	1158
Volume: beginning of the season	mcm	1249	1146	1011	887	792	730	
end of the season	mcm	1146	1011	887	792	730	714	
Water releases from reservoir	m3/s	114	112	120	100	90	100	
(water discharge from Gazalkent HPP)	mcm	307	289	321	268	218	268	1670
Andizhan reservoir			·					
Inflow to the reservoir	m3/s	52	56	58	52	50	57	
	mcm	140	145	156	138	121	152	852
Volume: beginning of the season	mcm	500	450	510	650	772	878	

		October	November	December	January	February	March	Total mcm
end of the season	mcm	450	510	650	772	878	965	
Water releases from reservoir	m3/s	70	32	6	6	6	24	
	mcm	187	84	16	16	15	65	383

RESULTS OF THE USE OF WATER WITHDRAWAL LIMITS AND OPERATION REGIMES OF THE RESERVOIR CASCADES IN THE AMU DARYA AND SYR DARYA RIVER BASINS OVER THE 2021 GROWING SEASON¹

I. Amu Darya River basin

The actual water availability in the Amu Darya River basin at the nominal Kerki gauging station (upstream of Garagumdarya) was 87.7 % of the norm over the 2021 growing season. The estimations were made taking into account the natural flow in the Vakhsh River and the regulation by the Nurek reservoir. In the past growing season, this value was 81.3 % of the norm. Water availability during the growing season 2021 was rather ambiguous: while in May-June it was within 85-93%, starting from July water availability decreased to 85-88% of the norm.

The use of the approved water withdrawal limits over the growing season under consideration is as follows (breakdown by state).

Taking into account the current water situation, 79.1 % of the approved water withdrawal limits was used totally in the basin. While the limit was 39,672.9 mcm, the actually used volume was 31,383.3 mcm, of which:

Republic of Tajikistan actually used 6,235.5 mcm or 89.7% of the total limit;

Turkmenistan actually used 12,986 mcm or 83.8 % of the total limit;

Republic of Uzbekistan actually used 12,161.8 mcm or 70.6% of the total limit.

Water user state	Water withdrawal limits, growing season 2021	Actual, mcm	%% of use
Republic of Tajikistan	6952.9	6235.5	89.7
Turkmenistan	15500	12986.0	83.8
Republic of Uzbekistan	17220	12161.8	70.6
Total	39672.9	31383.3	79.1

¹ Information on the first item of the 81th ICWC Meeting's Agenda

The use of water limits downstream of the nominal Kerki gauging station (upstream of Garagumdarya) was 77.9 % of the total limit over the growing season, of which:

- Republic of Uzbekistan actually used 11,558.7 mcm or 72.2 % of the total limit.
- Turkmenistan actually used 12,986 mcm or 83.8 % of the total limit;

Water user state	Water withdrawal limits, growing season 2021	Actual, mcm	%% of use	
Downstream of the nominal Kerki GS	31520	24544.7	77.9	
Turkmenistan	15500	12986.0	83.8	
Republic of Uzbekistan	16020	11558.7	72.2	

The actual use of water against limits is as follows by river reach:

1. Upper reaches – 6,838.6 mcm or 83.8 % of the total limit, including 6,235.5 mcm or 89.7 % of total limit in the Republic of Tajikistan and 603.1 mcm or 50.3 % of total limit in the Republic of Uzbekistan.

2. Middle reaches – 14,649.0 mcm or 90.4 % of the total limit, including 9579.9 mcm or 91.5 % of total limit in Turkmenistan and 5069.1 mcm or 88.4 % of total limit in the Republic of Uzbekistan.

3. Lower reaches – 9894.7 mcm or 64.6 % of the total limit, including 3406.1 mcm or 67.7 % of total limit in Turkmenistan and 6488.6 mcm or 63.1 % of total limit in the Republic of Uzbekistan.

Water user state	Water withdrawal limits, growing season 2021	Actual, mcm	%% of limit
Upper reaches	8152.9	6838.6	83.8
Republic of Tajikistan	6952.9	6235.5	89.7
Republic of Uzbekistan	1200	603.1	50.3
Middle reaches	16207.0	14650.0	90.4
Turkmenistan	10472.0	9579.9	91.5
Republic of Uzbekistan	5735.0	5070.1	88.4
Lower reaches	15313.0	9894.7	64.6
Turkmenistan	5028.0	3406.1	67.7
Republic of Uzbekistan	10285.0	6488.6	63.1

Water supply to the river delta and the Aral Sea was planned to be 2,100 mcm for the growing season. However, actual supply was 626 mcm or 29.8 %.

Forecast regimes of Nurek and Tuyamuyun reservoirs were calculated based on normal flow conditions.

The inflow to the Nurek reservoir was expected to be 15,113 mcm in the given growing season; however, the actual inflow was 15,465 mcm or 102.3 %. Water releases from the reservoir were planned to be 11,454 mcm; the actual releases were 11,826 mcm or 103.2 %.

By the end of the growing season 2021, water storage in the reservoir was planned to be 10,520 mcm. The actual volume was 10,573 mcm or 100.5 %.

The inflow to the Tuyamuyun reservoir was expected to be 18,324 mcm in the given growing season; however, the actual inflow was 12,900 mcm or 70.4 %. Water releases from the reservoir were planned to be 17,774 mcm; while the actual water releases were 13,180 mcm or 74.1 %.

By the end of the growing season 2021, water storage in the reservoir was planned to be 3,203 mcm; however, the actual storage was 2,372 mcm or 74.1 %.

Item		unit	Nurek reservoir	Tuyamuyun reservoir
Volume: beginning of the season		mcm	6383	2652
	forecast	mcm	15113	18324
Inflow to the reservoir	actual	mcm	15465	12900
		%%	102.3	70.4
	forecast	mcm	11454	17774
Water releases from reservoir	trom actual mcm		11826	13180
		%%	103.2	74.1
	forecast	mcm	10520	3203
Volume: end of the season	actual	mcm	10573	2372
		%%	100.5	74.1
	forecast	mcm	4137	551
Accumulation (+), drawdown (-)	actual	mcm	4190	-280
		%%	101.3	50.8

More detailed information is provided in Tables below.

		1	
Item	Limit, growing season	Actual	%%
Upper Amu D	arya Administratio)n	
(Upper reaches)	8152.9	6838.6	83.9
of which:			
Tajikistan	6952.9	6235.5	89.7
Uzbekistan	1200.0	603.1	50.3
Water withdrawals from the Amu Darya			
at nominal Kerki gauging station	31520.0	24544.7	77.9
of which:			
Turkmenistan	15500.0	12986.0	83.8
Uzbekistan	16020.0	11558.7	72.2
Middle Amu I	Darya Administratio	on	
(Middle reaches)	16207.0	14650.0	90.4
of which:			
Turkmenistan	10472.0	9579.9	91.5
Uzbekistan	5735.0	5070.1	88.4
Upradik и Lower A	.mu Darya Admini	stration	
Lower reaches:	15313.0	9894.7	64.6
of which:			
Turkmenistan	5028.0	3406.1	67.7
Uzbekistan	10285.0	6488.6	63.1
Total for the basin	39672.9	31383.3	79.1
of which:			
Tajikistan	6952.9	6235.5	89.7
Turkmenistan	15500.0	12986.0	83.8
Uzbekistan	17220.0	12161.8	70.6

Analysis of the use of water withdrawal limits in the Amu Darya River basin over the growing season 2021, mcm

Nurek reservoir	Unit	Months								
		IV	V	VI	VII	VIII	IX	TOTAL		
Volume: beginning of the season	mcm	6383	6307	7305	8529	10193	10571	6383		
Inflow to the reservoir	m3/s	415	912	1124	1412	1136	853			
	mcm	1076	2443	2913	3781	3042	2210	15465		
Water releases from the	m3/s	408	632	718	863	1008	850			
reservoir	mcm	1058	1693	1860	2311	2700	2203	11826		
Volume: end of the season	mcm	6307	7305	8529	10193	10571	10573	10574		
Accumulation (+), drawdown (-)	mcm	-76	998	1224	1664	378	3	4191		

Actual regime of operation of the Nurek and Tuyamuyun reservoirs (April–September 2021)

Tuyamuyun reservoir	Unit		Months								
		IV	V	VI	VII	VIII	IX	TOTAL			
Volume: beginning of the season	mcm	2652	2453	2420	2701	2411	2495	2652			
Inflow to the reservoir	m3/s	477	800	1188	807	890	732				
Inflow to the reservoir	mcm	1236	2143	3079	2161	2383	1897	12900			
Water releases from the	m3/s	554	813	1080	915	859	780				
reservoir	mcm	1435	2177	2798	2451	2299	2020	13180			
Volume: end of the season	mcm	2453	2420	2701	2411	2495	2372	2372			
Accumulation (+), drawdown (-)	mcm	-199	-33	281	-290	84	-123	-280			

Item	April	May	June	July	August	September	Actual delivery from 01.10.20 to 31.03.21
From the Amu Darya River, at Samanbay GS	63	67	76	58	51	38	353
Total water discharge from Dustlik and Suenli canals system							
CDF	56	43	40	42	42	50	273
TOTAL:	119	110	116	100	93	88	626
Cumulative, mcm	119	229	345	445	538	626	

Information on water supply to the Aral Sea and the Amu Darya River delta over the growing season 2021, mcm

2. Syr Darya River basin

I. Forecast of inflows

According to the UzHydromet's forecast, during the growing season 2021, water content was expected to be 100-105% (102.5%) of the norm in the basins of the rivers of the southern Fergana Valley, 80-90% (85%) - the Naryn River, 75-80% (77.5%) - the Chirchik River and the Akhangaran River, 70-80% (75%) - the Karadarya river, and 75-85% (80%) in the rivers of the northern Fergana Valley.

On April 12, 2021, the expected operation mode of the Toktogul reservoir for the growing season 2021 was provided by the Coordination Dispatch Center (CDC) "Energy", while the forecast operation schedules of the Andizhan and Charvak reservoirs – by the Ministry of Water Management of Uzbekistan and the forecast operation schedule of the Shardara reservoir - by the Ministry of Ecology, Geology and Natural Resources of Kazakhstan.

According to the forecast data, the inflow to upstream reservoirs was expected as follows:

- 85% to the Toktogul reservoir;
- 61% to the Andizhan reservoir;
- 77% of the norm to the Charvak reservoir (4 rivers in total).

The total lateral inflow was expected to be 79% of the norm.

In total, water content was expected to be 79% of the norm in the Syr Darya basin.

The forecast operation schedule of the Naryn-Syr Darya reservoir cascade for the growing season was taken into account at the 80th ICWC meeting and water withdrawal limits of riparian states in the Syr Darya river basin were approved.

The actual water situation, from April 1 to September 30, 2021, is as follows:

II. Total inflow (Table. 2.1)

The norm of total inflow to the Syr Darya River is 29,286 mcm over the growing season. According to UzHydromet, the forecast inflow was to be 23,051 mcm (79% of the norm).

The actual total inflow was 22,466 mcm, which is 585 mcm less or 97% of the forecast (in 2020, the total inflow for the growing season was 23,012 mcm).

III. Inflow to upstream reservoirs (Table. 2.1)

The norm of inflow to the upstream reservoirs of the Naryn-Syr Darya cascade is 18,324 mcm over the growing season. It is forecasted to be 14,375 mcm.

The actual total inflow to upstream reservoirs was 14,344 mcm or 100% of the forecast (78% of the norm), (in 2020, the total inflow for the growing season was 14,278 mcm).

IV. Lateral inflow (Table 2.1)

The norm of lateral inflow to the Syr Darya River up to Shardara reservoir is 10,962 mcm. According to UzHydromet, the forcast lateral inflow is to be 8,676 mcm (79% of the norm).

The actual lateral inflow was 8,122 mcm or 554 mcm less or 94% of the forecast (74% of the norm), (in 2020, the lateral inflow for the growing season was 8,734 mcm).

						Growing	sea	ason, mcm	n, 1 April – 3	30 September			
			2021						202	20			
Name of water object	Norm	Forecast	Forecast/ norm (%)	Actual	Actual /foreca st (%)	Actual / norm (%)		Nor m	Forecas t	Forecast/ norm (%)	Actual	Actual /forecas t (%)	Actual/ norm (%)
	Inflow to upstream reservoirs												
Toktogul	9620	8175	85	8762	107	91		9620	8656	90	8679	100	90
Andizhan	2927	1772	61	1719	97	59		2992	2083	70	1200	58	40
Charvak (4 rivers in total)	5777	4428	77	3863	87	67		5748	5176	90	4399	85	77
Including:													
- Charvak (3 rivers in total)	5240	3954	75	3522	89	67		5208	4702	90	4042	86	78
- Ugam river	537	474	88	341	72	64		540	474	88	357	75	66
Total	18324	14375	78	14344	100	78		18360	15915	87	14278	90	78
					Lateral i	nflow							
Toktogul – Uchkurgan	1216	1095	90	1040	95	86		1216	1144	94	1076	94	88
Andizhan – Uchtepe	2511	2053	82	2100	102	84		2521	2211	88	2081	94	83
Uchkurgan, Uchtepe – Bakhri Tochik	3349	2685	80	2321	86	69		3362	3159	94	2227	70	66
Bakhri Tochik – Shardara	2985	2211	74	1834	83	61		3020	2843	94	2454	86	81

Name of water object		Growing season, mcm, 1 April – 30 September												
			2021				20	20						
	Norm	Forecast	Forecast/ norm (%)	Actual	Actual /foreca st (%)	Actual / norm (%)	Nor m	Forecas t	Forecast/ norm (%)	Actual	Actual /forecas t (%)	Actual/ norm (%)		
Gazalkent–Chinaz (excluding Ugam)	901	632	70	827	131	92	904	790	87	896	113	99		
Total:	10962	8676	79	8122	94	74	11023	10147	92	8734	86	79		
Overall (total inflow):	29286	23051	79	22466	97	77	29383	26062	89	23012	88	78		

V. Inflow to in-stream reservoirs and water supply to the Aral Sea (Table.2.2)

The inflow to the Bakhri Tochik reservoir was scheduled to be 5,050 mcm over the growing season 2021.

The actual inflow to the reservoir was 5,284 mcm or 234 more than the forecast (in 2020, the inflow was 5,134 mcm).

The inflow to the Shardara reservoir was scheduled to be 4,084 mcm.

Actual inflow to the reservoir was 2,315 mcm or 1,769 mcm less than the forecast (in 2020, the inflow was 3,121 mcm).

The inflow to the Aral Sea and the Aral Sea region was scheduled to be 1,262 mcm. The actual inflow to Karateren gauging station was 201 mcm.

				Growing season, mcm 1 April to 30 September						
			2021					2020		
Item	Schedule	hedule Actual Actual/ (%) Difference (actual "_" schedule)			Sched ule	Actu al	Actua l/ sched ule (%)	Difference (actual "_" schedule)		
]	Inflow to in	-stream reser	n reservoirs					
Inflow to the Bakhri Tochik reservoir	5050	5284	105	234		6185	5134	83	-1051	
Inflow to the Shardara reservoir	4084	2315	57	-1769		6441	3121	48	-3320	
				Supply to t	the	e Aral Sea	a			
Supply to the Aral Sea	1262	201	16	-1061		1053	467	44	-586	

Table 2.2

VI. Water releases from reservoirs (Table 2.3)

According to the forecast operation schedule of the Naryn-Syr Darya reservoir cascade, 23,271 mcm were to be released from reservoirs over the growing season.

The actual water releases were 21,264 mcm or 2,007 mcm less than the schedule (91% of the schedule) (in 2020, 20,451 mcm were released from reservoirs).

Table 2.3

	Water releases, mcm 1 April to 30 September									
Reservoir		2021			2020					
	Schedule	Actual	Actual/ schedule (%)	Schedule	Actual	Actual/ schedule (%)				
Upstream reservoirs										
Toktogul	5107	5167	101	5676	5154	91				
Andizhan	1832	1998	109	2172	1611	74				
Charvak (discharge of the Gazalkent HPP)	3437	3461	101	3947	3236	82				
TOTAL:	10376	10626	102	11795	10001	85				
		In-stream	m reservoirs			•				
Bakhri Tochik	6131	6383	104	6645	5560	84				
Shardara	6764	4255	63	8719	4890	56				
TOTAL:	12895	10638	82	15364	10450	68				
OVERALL:	23271	21264	91	27159	20451	75				

VII. Water storage in reservoirs (Table 2.4)

The actual water storage in the Naryn-Syr Darya reservoir cascade was 18,567 mcm by the beginning of the growing season (as of 1 April 2021).

In the reservoirs, the scheduled water storage was 16,506 mcm by the end of the growing season. The actual water storage was 16,307 mcm or 199 mcm less than the scheduled forecast.

In the upstream reservoirs, the scheduled water storage was to be 13,921 mcm by the end of the growing season. The actual water storage was 14,053 mcm or 132 mcm more than the scheduled forecast by the end of the growing season.

In the in-stream reservoirs, the scheduled water storage was to be 2,585 mcm by the end of the growing season. The actual water storage was 2,254 mcm or 331 mcm less than the scheduled forecast.

VIII. Water supply to the states (Table 2.5).

Water was supplied to the user states based on approved water withdrawal limits and submitted requests.

Over the non-growing season, water supply was:

- Republic of Kazakhstan: limit 903 mcm, actual 698 mcm;
- Kyrgyz Republic: limit 246 mcm, actual 144 mcm;
- Republic of Tajikistan: limit 1,905 mcm, actual 1,495 mcm;
- Republic of Uzbekistan: limit– 8,800 mcm, actual 7,611 mcm.

Actual total water withdrawals by user states amounted to 9,948 mcm.

Table 2.4

			Reservoi	r storage, mcm		
Reservoir	Actual as of April 1, 2021	Schedule as of 1 October, 2021	Actual as of 1 October, 2021	Difference (actual "_" schedule)	Actual as of 1 October, 2020	Difference (actual as of 1 October 2021 "-" actual as of 1 October 2020)
Upstream res	ervoirs			· · · ·		
Toktogul	8712	11650	12304	654	15202	-2898
Andizhan	764	704	500	-204	383	117
Charvak	561	1567	1249	-318	1282	-33
TOTAL:	10037	13921	14053	132	16867	-2814
In-stream reso	ervoirs					
Bakhri Tochik	3463	1604	1587	-17	1684	-97
Shardara	5067	981	667	-314	829	-162
TOTAL:	8530	2585	2254	-331	2513	-259
OVERALL:	18567	16506	16307	-199	19380	-3073

Table	2.5
-------	-----

Water user state		April to 30 September mcm
	limit	actual
Republic of Kazakhstan (Dustlik canal)	903	698
Kyrgyz Republic	246	144
Republic of Tajikistan	1905	1495
Republic of Uzbekistan	8800	7611
Total	11854	9948

IX. Execution of the Protocol Decisions on reciprocal exchange of power and additional releases through the Uchkurgan HPP and the operation mode of the Bakhri Tojik reservoir for the period July-August **2021** (Table 2.6).

Taking into account the expected low water availability in the Syr Darya basin for the growing season of 2021, lower snow accumulation, and less water storage in the Toktogul reservoir, to ensure inflow to the Bakhri Tojik reservoir, the decision was made and protocols on reciprocal exchange of power were signed between Ministries of Energy and Water Management of Uzbekistan, the Ministry of Energy, Ecology, Geology and Natural Resources of Kazakhstan and the Ministry of Energy and Industry of the Kyrgyz Republic.

According to the Protocol of March 2, 2021, signed between the Ministry of Energy, the Ministry of Ecology, Geology and Natural Resources of the Republic of Kazakhstan and the Ministry of Energy and Industry of the Kyrgyz Republic on power exchange, 300.6 million kWh of electricity was returned to the Republic of Kazakhstan from June 1 to August 24, 2021 and additional releases from the Uchkurgan HPP amounted to 336 mcm.

According to the Protocol on reciprocal exchange of power signed on 11 March 2021 between the Ministry of Energy, the Ministry of Water Management of the Republic of Uzbekistan and the Ministry of Energy and Industry of the Kyrgyz Republic, the return of power to the Republic of Uzbekistan from 1 June to 23 August was provided in the amount of 249.5 million kWh, and the additional water releases from the Uchkurgan HPP were 282 mcm.

On June 16, 2021, a trilateral protocol was signed between Kazakhstan, Tajikistan and Uzbekistan on additional water releases from the Bakhri Tochik reservoir.

As a result of the above measures, including signing of trilateral and bilateral protocols, implementation of all protocol decisions by Kazakhstan, Tajikistan, Kyrgyzstan and Uzbekistan, repeated working meetings and coordinated measures taken, it was managed to deliver water to irrigated land in the middle reaches of the Syr Darya River.

X. Actual water delivery from the "Dustlik" canal to the Kazakh territory, in line with the trilateral Protocol of June 16, 2021 (Table 2.7).

Table 2.8 shows the forecast operation schedule of the Naryn-Syr Darya reservoir cascade for the 2021 growing season.

Table 2.9 shows the actual operation regime of the Naryn-Syr Darya reservoir cascade in the 2021 growing season.

31

Trilateral protocol (additional releases Akjar+)												
	Ju	ne		July					August			
Item	II from 16 to 20	III	ave. (16 - 30 June)	Ι	II	ш	ave. monthly	Ι	II	III	ave. monthly	
Inflow to reservoirs per protocol	300	300	300	300	300	300	300	300	300	300	300	
Releases	400	450	433	530	530	530	530	500	440	365	433	
Trilateral protocol (additional releases Akjar +)	100	150	133	230	230	230	230	200	140	65	133	
		Actual (addi	tional releases	Akjar -	+)	•			•		mcm	
inflow	350	298	315	271	301	381	320	280	260	244,7	261	
releases	411	429	423	498	496	589	530	610	425	314,5	445	
difference (total Akjar +)	61	131	108	227	195	208	210	330	165	70	184	

		June			June			July				August				
Item	Unit	Ι	II	III	Ι	II	III	Mean mont hly	I	II	III	Mean mont hly	Ι	Π	III	Mean mont hly
	m3 /s	40	50	50	40	45	50	45.2	80	80	80	80	70	60	50	60
Protocol	mcm	34.6	43.2	43.2	34.6	38.9	43.2	117	69.1	69.1	76.0	214	60.5	51.8	47.5	160
	cumula tive	34.6	77.8	121.0	34.5	73.4	116.6		185.8	254.9	330.9		391.4	443.2	491	
	m3 /s	38.5	53	44.5	36	45	50	44	78	81	97	86	100	70	50.5	73
Actual	mcm	33.3	45.8	38.4	30.8	38.9	43.2	113	67.6	70.2	92.3	230	86.4	60.5	47.9	195
Actual	cumula tive	33.3	79.1	117.5	30.8	70	112.9		180.5	250.6	342.9		429.3	489.8	538	

Actual water delivery from the Dustlik Canal to the Kazakh territory, in line with the Protocol of 16 June 2021

Forecast operation schedule of the Naryn-Syr Darya reservoir cascade, 1 April to 30 September 2021

		IV	v	VI	VII	VIII	IX	Total, mcm
	Toktogul rese	rvoir						
Inflow to the reservoir	m3/s	252	541	823	708	492	281	
	mcm	652	1448	2132	1897	1317	729	8175
Volume: beginning of the season	mcm	8712	8674	9302	10421	11156	11438	
End of the season	mcm	8674	9302	10421	11156	11438	11650	
Water releases from the reservoir (total)	m3/s	266	300	384	422	372	190	
	mcm	689	804	995	1130	996	492	5107
including: 1. domestic needs of the	m3/s	266	300	299	340	310	190	
Kyrgyz Republic	mcm	689	804	775	910	831	492	4502
2. additional releases - energy receipt								
Republic of Uzbekistan	m3/s			42	41	21		
Republic of Ozbekistali	mcm			110	110	55		275
Republic of Kazahkstan	m3/s			42	41	41		
Republic of Razalikstan	mcm			110	110	110		330
	Bakhri Tochik	reservoir						
Inflow to the reservoir	m3/s	448	388	308	250	254	272	
(Akdjar GS)	mcm	1160	1039	797	669	681	704	5050
Volume: beginning of the season	mcm	3463	3433	3477	2988	2091	1506	
end of the season	mcm	3433	3477	2988	2091	1506	1604	
Water releases from the reservoir	m3/s	461	347	440	500	392	185	
	mcm	1194	929	1140	1339	1050	480	6131

		IV	V	VI	VII	VIII	IX	Total, mcm
Shardara reservoir		1	1			1		
Inflow to the reservoir	m3/s	505	358	200	180	140	170	
		1309	959	518	482	375	441	4084
Volume: beginning of the season	mcm	5067	5140	4513	3396	2073	1020	
end of the season	mcm	5140	4513	3396	2073	1020	981	
Water releases from the reservoir	m3/s	400	520	520	520	450	150	
	mcm	1037	1393	1348	1393	1205	389	6764
Releases into the Kyzylkum canal	m3/s	70	50	70	110	50	10	
	mcm	181	134	181	295	134	26	951
Supply to the Aral Sea	m3/s	80	70	70	70	70	120	
	mcm	207	187	181	187	187	311	1262
Charvak reservoir						•		
Inflow to the reservoir	m3/s	205	373	461	337	190	113	
(4 rivers in total)	mcm	532	998	1194	902	508	294	4428
Volume: beginning of the season	mcm	561	786	1292	1881	1926	1688	
end of the season	mcm	786	1292	1881	1926	1688	1567	
Water releases from the reservoir	m3/s	125	184	233	320	278	160	
(Releases from Gazalkent HPP)	mcm	323	492	605	857	745	415	3437
Andizhan reservoir	·							
Inflow to the reservoir	m3/s	112	200	142	103	63	52	
	mcm	291	536	367	275	169	134	1772
Volume: beginning of the season	mcm	764	805	965	996	788	674	
end of the season	mcm	805	965	996	788	674	704	
Water releases from reservoir	m3/s	97	140	130	180	106	40	
	mcm	251	375	337	482	283	104	1832

Actual operation schedule of the Naryn-Syr Darya reservoir cascade, 1 April to 30 September 2021

		IV	v	VI	VII	VIII	IX	Total, mcm
	Tokto	gul reservoi	ir	L		I	L	I
Inflow to the reservoir	m3/s	273	846	748	677	458	313	
	mcm	707	2266	1939	1812	1227	811	8762
Volume: beginning of the season	mcm	8712	8680	10230	11091	11782	12011	
end of the season	mcm	8680	10230	11091	11782	12011	12304	
Water releases from the reservoir	m3/s	288	280	402	420	370	199	
(total)	mcm	745	749	1041	1124	992	515	5167
including: 1. Domestic needs of the	m3/s	288	280	330	323	306	199	
Kyrgyz Republic	mcm	745	749	854	866	818	515	4548
2. additional releases - energy receipt								
Republic of Uzbekistan	m3/s			40	45	22		
Republic of Ozbekistali	mcm			103	121	58		282
Republic of Kazakhstan	m3/s			33	51	43		
Republic of Razaklistan	mcm			84	137	115		336
	Bakhri	Tochik rese	ervoir					
Inflow to the reservoir	m3/s	478	392	327	320	261	228	
(Akdjar GS)	mcm	1239	1051	847	856	699	592	5284
Volume: beginning of the season	mcm	3463	3458	3482	3090	2298	1587	
end of the season	mcm	3458	3482	3090	2298	1587	1587	
Water releases from the reservoir	m3/s	543	367	395	530	445	138	

		IV	v	VI	VII	VIII	IX	Total, mcm
	mcm	1408	983	1024	1419	1193	356	6383
	Share	dara reserv	oir					
Inflow to the reservoir	m3/s	463	105	71	67	81	99	
	mcm	1200	281	183	178	217	255	2315
Volume: beginning of the season	mcm	5067	4841	4120	3285	1481	706	
end of the season	mcm	4841	4120	3285	1481	706	667	
Water releases from the reservoir	m3/s	350	257	236	500	225	41	
	mcm	907	690	611	1339	603	105	4255
Releases into the Kyzylkum canal	m3/s	101	43	40	87	30	5	
	mcm	262	114	104	232	81	13	807
Supply to the Aral Sea	m3/s	56	9	5	6	0,5	1	
	mcm	145	24	12	16	1,3	1	201
	Chai	vak reserv	oir					
Inflow to the reservoir	m3/s	180	439	371	211	141	122	
(4 rivers in total)	mcm	466	1177	962	566	377	315	3863
Volume: beginning of the season	mcm	561	781	1543	1870	1659	1379	
end of the season	mcm	781	1543	1870	1659	1379	1249	
Water releases from the reservoir	m3/s	118	219	290	294	242	148	
(Releases from Gazalkent HPP)	mcm	307	586	751	786	647	383	3461
	Andiz	zhan reserv	oir					
Inflow to the reservoir	m3/s	109	256	152	53	37	44	
	mcm	284	686	395	142	98	115	1719
Volume: beginning of the season	mcm	764	798	1187	1130	702	489	
end of the season	mcm	798	1187	1130	702	489	500	
Water releases from reservoir	m3/s	93	119	173	212	118	40	
	mcm	242	319	450	569	315	103	1998
APPROVAL OF WATER WITHDRAWAL LIMITS AND OPERATION REGIMES OF THE RESERVOIR CASCADES DURING THE GROWING SEASON 2021 IN THE AMU DARYA AND SYR DARYA RIVER BASINS²

I. Amu Darya River basin

Limits of water withdrawal from the Amu Darya River and water supply to the river delta and the Aral Sea for the growing season 2021-2022, mcm

	Water withdrawal limits, mcm			
River basin, state	Total annual (1.10.21-1.10.22)	including growing season (1.10.21-1.04.22)		
Total withdrawal from the Amu Darya River	55 407	15 734		
of which:				
Republic of Tajikistan	9 837	2 884		
Republic of Uzbekistan	1 570	370		
From the Amu Darya River to the nominal Kerki gauging station	44 000	12 480		
Turkmenistan	22 000	6 500		
Republic of Uzbekistan	22 000	5 980		
Plus:				
- water supply to the delta and the Aral Sea, including irrigation water and CDW	4 200	2 100		
- sanitary and environmental flow to irrigation systems in:	800	800		
Dashoguz province	150	150		
Khorezm province	150	150		
Republic of Karakalpakstan	500	500		

² Information on the second item of the 81th ICWC meeting agenda

Nurek reservoir	Unit	Actual		Forecast				total	
Nulek leselvoli	Unit	Х	XI	XII	Ι	II	III	totai	
Volume: beginning of the period	mcm	10570	10469	9915	8918	7840	7008	10570	
Inflow to the recompoint	m3/s	339	248	230	180	180	205		
Inflow to the reservoir	mcm	909	644	616	482	435	548	3634	
Water releases from the	m3/s	381	436	563	545	461	432		
reservoir	mcm	1019	1130	1508	1461	1115	1158	7390	
Volume: end of the period	mcm	10469	9915	8918	7840	7008	6215	6215	
Accumulation (+) drawdown (-)	mcm	-101	-554	-997	-1078	-832	-793	-4355	

Forecast operation regimes of the Nurek and Tuyamuyun reservoirs (October 2021 to March 2022)

Tuyomuyun rocoryoir	Unit	Actual		Forecast				total	
Tuyamuyun reservoir	Unit	Х	XI	XII	Ι	II	III	total	
Volume: beginning of the period	mcm	2370	2351	2615	3150	3617	3112	2370	
Inflow to the reservoir	m3/s	476	250	323	437	422	456		
minow to the reservoir	mcm	1276	647	866	1171	1022	1222	6205	
Water releases from the	m3/s	483	148	124	263	631	574		
reservoir	mcm	1295	384	331	704	1527	1536	5777	
Volume: end of the period	mcm	2351	2615	3150	3617	3112	2798	2798	
Accumulation (+) drawdown (-)	mcm	-19	263	535	468	-505	-314	428	

II. Syr Darya River basin

I. Forecast of inlfow

On the 24th of September 2021, UzHydromet provided the forecast for the non-growing season 2021-2022.

On the 5th of October 2020, the expected operation regimes of the Toktogul reservoir were provided by the Coordination Dispatch Center (CDC) "Energy", while the forecast operation regimes of the Andizhan and Charvak reservoirs - by the Ministry of Water Management of the Republic of Uzbekistan.

The forecast operation schedule of Charvak reservoir was developed on the basis of forecast inflows to the reservoir provided by UzHydromet and expected releases taken at the level of the last non-growing season.

The forecast operation schedule of the Shardara reservoir for the nongrowing season was agreed with the Ministry of Ecology, Geology and Natural Resources of the Republic of Kazakhstan.

According to the data, the inflow to upstream reservoirs was expected as follows:

- 95% to the Toktogul reservoir;
- 92% to the Andizhan reservoir;
- 81% of the norm to the Charvak reservoir (sum of 4 rivers).

The total lateral inflow is expected to be 84 % of the norm.

In total, water content is expected to be 86% of the norm in the Syr Darya basin.

II. Total inflow (Table 2.1)

Over the non-growing season, the norm of total inflow in the Syr Darya basin is 16,426 mcm. The forecast inflow is 14,145 mcm (86% of the norm).

For the past 2020-2021 non-growing season, the total inflow in the Syr Darya basin was forecasted to be 16,075 mcm. The actual inflow was 13,856 mcm, which is 2,219 mcm less than the forecast or 86% of it.

III. Inflow to upstream reservoirs (Table 2.1)

The norm of inflow to the upstream reservoirs of the Naryn-Syr Darya cascade is 5,296 mcm over the non-growing season. The inflow is forecasted to be 4,808 mcm (91% of the norm).

The norm of inflow to the Toktogul reservoir is 2,945 mcm. It is forecasted to be 2,798 mcm (95% of the norm).

The norm of inflow to the Andizhan reservoir is 929 mcm. It is forecasted to be 852 mcm (92% of the norm).

The norm of inflow to the Charvak reservoir (sum of 4 rivers) is 1,422 mcm. The forecast inflow is 1,158 mcm (81% of the norm).

IV. Lateral inflow (Table 2.1)

The norm of lateral inflow is 11,130 mcm. The forecast lateral inflow is 9,337 mcm (84% of the norm).

41

	Non-growing season, mcm								
Name		2021-2	022	2020-2021					
	norm	forecast	forecast/ norm (%)	norm	forecast	forecast/ norm (%)	actual	actual / forecast (%)	
			Inflow to upstrea	m reservoir:	8				
Toktogul	2945	2798	95	2861	2861	100	2892	101	
Andizhan	929	852	92	934	822	88	783	95	
Charvak (sum of 4 rivers)	1422	1158	81	1408	1419	101	1129	80	
including:									
- Charvak (sum of 3 rivers)	1256	1015	81	1242	1261	102	1004	80	
- Ugam River	166	143	86	166	158	95	125	79	
Total	5296	4808	91	5203	5102	98	4804	94	
			Lateral in	flow					
Toktogul – Uchkurgan	398	382	96	4365	4396	101	3475	79	
Andizhan – Uchtepe	2533	2045	81	2953	2985	101	2102	70	
Uchkurgan, Uchtepe – Bakhri Tochik	4397	3611	82	841	833	99	780	94	
Bakhri Tochik – Shardara	2969	2513	85	11075	10973	99	9052	82	
Gazalkent–Chinaz (excluding Ugam)	833	786	94	16278	16075	99	13856	86	
Total	11130	9337	84	4365	4396	101	3475	79	
Overall (total inflow)	16426	14145	86	2953	2985	101	2102	70	

V. Water storage in the reservoirs (Table 2.2)

As of the 1 October 2021, the total water storage in the reservoirs is 16,307 mcm (including 7,963 mcm of dead storage). The water storage, excluding dead storage, is 8,344 mcm.

As of 1 October 2020, water storage in the reservoirs was 19,380 mcm (including 7,963 mcm of dead storage). The water storage in the reservoirs, excluding dead storage, was 11,417 mcm.

By the beginning of the non-growing season 2021-2022, the water storage was 3,073 mcm less than by the beginning of the non-growing season 2020-2021.

Available water resources of the Naryn-Syr Darya reservoir cascade (total inflow plus water storage in the reservoirs, excluding dead storage) are 22,489 mcm for the non-growing season 2021-2022.

(14,145 bcm+ 8,344 bcm=22,489 bcm)

Table 2.2

	Reservoir storage, mcm							
Reservoir	Actual as of October 1, 2021Actual as of October 1, 2020		Dead storage					
Upstream reservoirs								
Toktogul	12304	15202	5500					
Andizhan	500	383	150					
Charvak	1249	1282	426					
TOTAL:	14053	16867	6076					
	In-stream reserve	birs						
Bakhri Tochik	1587	1684	917					
Shardara	667	829	970					
TOTAL:	2254	2513	1887					
OVERALL:	16307	19380	7963					

VI. Water releases from reservoirs (Table 2.3)

According to the forecast operation regime of the Naryn-Syr Darya reservoir cascade, 26,216 mcm $\phi \kappa y$ planned to be released from the reservoirs in the non-growing season 2021-2022.

According to the forecast operation regime of the Naryn-Syr Darya reservoir cascade for the non-growing season 2020-2021, 29,247 mcm were planned to be released. However, actual releases from the reservoirs were 27,673 mcm (1,574 mcm less than the scheduled amount).

Table 1	2.3
---------	-----

	Water releases, mcm						
Reservoir	Forecast schedule, 2021-2022	Actual, 2020-2021					
Upstream reservoirs							
Toktogul	8745	8679	9379				
Andizhan	383	480	378				
Charvak (discharge of the Gazalkent HPP)	1670	1637	1748				
TOTAL:	10798	10796	11505				
In-stream reservoirs							
Bakhri Tochik	9765	11256	11090				
Shardara	5653	7195	5078				
TOTAL:	15418	18451	16168				
OVERALL:	26216	29247	27673				

VII. Water withdrawal limits (Table 2.4)

Taking into account requests submitted by water user states, the following water withdrawal limits are proposed for the non-growing season.

The total water withdrawal limits of all states are 4,213 mcm for the nongrowing season.

Water user state	Based on request, mcm
Republic of Kazakhstan (Dustlik canal)	454
Kyrgyz Republic	47
Republic of Tajikistan	365
Republic of Uzbekistan	3347
Total from Syr Darya river	4213

According to the long-term annual average data, water supply to the Aral Sea and the Aral Sea region is expected to be 1,115 mcm in the non-growing season.

Over the non-growing season 2020-2021, water supply to the Aral Sea and the Aral Sea region, as measured at Karateren GS, was 1,151 mcm.

The schedule of operation regime of the Naryn-Syr Darya reservoir cascade over the period from 1 October 2021 to 31 March 2022 was developed according to the forecast and based on water storage in the reservoirs and requests submitted by water user states (Table 2.5).

Forecast operation schedule of the Naryn-Syr Darya reservoir cascade, 1 October 2021 to 31 March 2022

		October	November	December	January	February	March	Total, mcm
Toktogul reservoir								
Inflow to the reservoir	m3/s	234	181	168	159	158	166	
	mcm	628	468	450	426	382	445	2798
Volume: beginning of the season	mcm	12304	11936	11024	9837	8334	7226	
end of the season	mcm	11936	11024	9837	8334	7226	6342	
Water releases from the reservoir	m3/s	369	532	611	720	616	493	
	mcm	988	1378	1637	1930	1491	1320	8745
Domestic needs of the Kyrgyz Republic	m3/s	474	578	700	795	695	650	
(according to data from CDC "Energy")	mcm	1270	1499	1875	2129	1681	1741	10195
Power flows to the Kyrgyz Republic from other	republics, in wat	er equivalent	t					
Uzbekistan	m3/s	29					82	
Ozbekistan	mcm	78					220	298
Kazakhstan	m3/s	31	23	30	30	35	35	
Kazaklistali	mcm	83	59	79	79	86	94	480
Turkmenistan	m3/s	45	24	59	45	43	40	
Turkmenistan	mcm	120	61	159	121	105	107	672
Bakhri Tochik reservoir								
Inflow to the reservoir	m3/s	421	621	899	928	828	595	
(Akdjar GS)	mcm	1129	1609	2409	2485	2004	1592	11228
Volume: beginning of the season	mcm	1587	2426	2943	3190	3421	3432	
end of the season	mcm	2426	2943	3190	3421	3432	3430	

		October	November	December	January	February	March	Total, mcm
Water releases from the reservoir	m3/s	136	487	820	860	840	600	
	mcm	364	1263	2196	2303	2032	1607	9765
Shardara reservoir		1	1					
Inflow to the reservoir	m3/s	145	332	937	943	923	681	
	mcm	388	861	2510	2527	2232	1824	10341
Volume: beginning of the season	mcm	667	881	1222	2175	3071	4127	
end of the season	mcm	881	1222	2175	3071	4127	5199	
Water releases from the reservoir	m3/s	44	192	576	600	481	270	
	mcm	118	498	1543	1607	1164	723	5653
Supply to the Aral Sea	m3/s	0,5	4	50	56	183	141	
	mcm	1	10	134	151	442	377	1115
Charvak reservoir								
Inflow to the reservoir	m3/s	76	67	74	65	65	94	
(sum of 4 rivers)	mcm	204	174	198	175	156	252	1158
Volume: beginning of the season	mcm	1249	1146	1011	887	792	730	
end of the season	mcm	1146	1011	887	792	730	714	
Water releases from the reservoir	m3/s	114	112	120	100	90	100	
(Discharge from the Gazalkent HPP)	mcm	307	289	321	268	218	268	1670
Andizhan reservoir								
Inflow to the reservoir	m3/s	52	56	58	52	50	57	
	mcm	140	145	156	138	121	152	852
Volume: beginning of the season	mcm	500	450	510	650	772	878	
end of the season	mcm	450	510	650	772	878	965	
Water releases from the reservoir	m3/s	70	32	6	6	6	24	
	mcm	187	84	16	16	15	65	383

FOLLOW UP ON PROPOSALS AND INITIATIVES VOICED AT THE SUMMIT OF THE HEADS OF IFAS FOUNDER-STATES IN THE CITY OF TURKMENBASHI³

SIC ICWC's activities on initiatives of the Heads of IFAS founder-states voiced at summit in Turkmenbashi

(as of 18 November 2021)

General information

XII meeting of the Council of Heads of IFAS Founder-States took place in the city of Turkmenbashi on the 24th of August 2018. The Heads of State put forward a number of initiatives to address existing problems. Since the 77th ICWC meeting (November 5-6, Almaty), the follow up to these initiatives has been discussed at ICWC meetings.

The decision of the 80th meeting on this subject states: "(1) Take note of work done by ICWC bodies as a follow-up to proposals and initiatives put forward in Turkmenbashi at the Summit of the Heads of IFAS founder-states Take note of the information provided by the SIC ICWC on initiatives of the Heads of IFAS Founder-States voiced at Summit (Turkmenbashi, August 24, 2018). (2) SIC ICWC is to prepare ToR for development of a feasibility study on automation of gauging stations in the Syr Darya Basin, including small rivers, and submit it to ICWC members in due course; (3) BWO Amu Darya and BWO Syr Darya together with SIC ICWC are to define more precisely the actual water losses along the Amu Darya and the Syr Darya."

1. Automation of gauging stations in the Amu Darya and the Syr Darya basins

Pursuant to the decision of the 80th ICWC meeting (11 May, videoconference) on preparation of the draft ToR of a feasibility study on automation of gauging stations in the Syr Darya river basin, including small rivers, the members of the ICWC working group on "Improvement of water quality and accuracy of water accounting" have collected materials on the main gauging stations of the Syr Darya and small rivers (together with BWO "Syr Darya"). The ToR prepared by SIC ICWC specialists for the project FS for the upper, middle and lower reaches of the Syr Darya River within the territories of four riparian

³ Information on the third item of 81st ICW meeting's agenda

republics, including small rivers, was submitted to ICWC members and heads of executive bodies for approval (ref. № 132 of 06.10.21).

SIC ICWC as part of the 35th call for proposals on research projects announced by the Ministry of Innovations of Uzbekistan on "Agriculture, Veterinary and Environmental Sciences" submitted a project proposal titled "Development of Hydrological Regulation Technology for Intake Structures on Large Rivers". The project proposal was rejected by the Technical Council.

2. Establishment of a water-energy consortium

The work on the establishment of a water- energy consortium or any other economic mechanism is included as part of a developed project under theme 4.7 "Regional mechanisms for low-carbon, climate-resilient transformations of energy, water, land nexus in Central Asia" (Government of German, "International Climate Initiative 2020", partners - OECD, EBRD, UNECE, SIC ICWC). A regional conference on the High-level policy dialogue for the effective development of energy, water and land nexus in Central Asia was held and launched the preparatory stage for given four-year project (15 October, Tashkent).

3. IWRM implementation, water conservation and rational water use

The policy briefs "Planning IWRM: theory, practice, challenges and recommendations" and "Water Conservation Lessons in the Republic of Uzbekistan" were drafted. Negotiations were started with the colleagues from the Tajik branch of SIC ICWC on preparation of a review on Tajikistan.

To implement the proposal of the President of Uzbekistan on adoption of a Regional Program of Rational Water Use in Central Asia, work is underway with national and international partners. In particular, the matter of coordination of potential regional actions on rational use of water resources in Central Asia is included in the project proposal under theme 4.7. "Regional mechanisms for low-carbon, climate-resilient transformations of energy, water, land nexus in Central Asia" (Government of German, "International Climate Initiative 2020", partners - OECD, EBRD, UNECE, SIC ICWC).

As part of preparation to launch this project, SIC ICWC together with national experts from Central Asian countries prepared a Discussion Paper "Water, food and energy security in Central Asia: benefits of cross-sectoral (nexus) solutions" for the planned German/OECD project. The Discussion Paper was presented at the High-level policy dialogue on 15 October in Tashkent.

4. Water accounting

SIC keeps ten-day monitoring of water balance in the Amu Darya and the Syr Darya basins and regularly informs on balance discrepancies in the river basins. Regular analytical reports on the situation in the basin for each ten-day period are published on the SIC's website in the "Water-management situation in the Amu Darya basin" and "Water-management situation in the Syr Darya basin" sections, and in the weekly information bulletin "Water management, irrigation and environment in EECCA", which is disseminated to more than 70 recipients.

Pursuant to the decision of the 80th ICWC meeting (11 May, videoconference) on more precise definition of the actual water losses along the Amu Darya and the Syr Darya together with BWO "Amu Darya" and BWO "Syr Darya" (1) the information on situation with flow discrepancies for last 10 years and a proposal on formation of a working group to identify losses along the Amu Darya and the Syr Darya were submitted to ICWC members, heads of BWO "Amu Darya" and BWO "Syr Darya" (ref. No.77 of 25.05.21). The request for nomination of experts to the working group was repeatedly sent to MEGNR of Kazakhstan (ref. N_{P} 90 dated 17.06.21) and MEWR of Tajikistan (ref. N_{P} 94 dated 21.06.21). BWO Syr Darya (N_{P} 01/144 dated 26.05.21) and BWO Amu Darya (N_{P} 137/01 dated 15.06.21) have nominated their candidatures. SIC ICWC had a meeting with members of the working group from BWO "Syr Darya" (June 21); (2) a calculation methodology was determined and tested on river balances of the Amu Darya and the Syr Darya from 1992 to 2010.

Under the contract with BWO "Amu Darya", research is underway on more precise definition of the Amu Darya River balance items and development of XLSX routine.

SIC ICWC together with the Institute of Geographic Sciences and Natural Resources Research of the Chinese Academy of Sciences and with participation of BWO "Amu Darya" and its territorial divisions are implementing the project "Development of e-rules of flow regulation in the Amu Darya River basin" under the contract with the Ministry of Innovative Development of Uzbekistan.

5. Mitigation of the Aral Sea disaster

Regular RS-based monitoring (once in 2 months) is conducted over the status of lakes and wetlands in the Aral Sea and the Aral Sea region. The monitoring results are uploaded on the Portal - www.cawater-info.net. During the reporting period, information "About the state of water bodies and wetlands in the Southern Aral Region", including recommendations to prioritize water needs in the lower reaches, was submitted to the Ministry of Water Management of Uzbekistan, the State Committee for Environmental Protection of Uzbekistan, the

Ministry of Emergency of Uzbekistan, Jokargy Kenes of Karakalpakstan, UzHydromet, and the Committee on Environment and Environmental Protection of the Legislative Chamber of Oliy Majlis of Uzbekistan (ref. No. 81 of 01.06.21; ref. №130 of 30.09.2021; ref. 136 of 07.10.21).

SIC ICWC had an expedition to the Amu Darya river delta and the Southern Aral Region in the territory of Uzbekistan (since June 10). The main tasks were: (1) assessment of the ecological status of lake systems in the Southern Aral Region; (2) improvement of SIC ICWC methodology for determining areas of water bodies and wetlands (based on RS and GIS-research data); (3) investigation of water regime of the Sudochie, Dzhyltyrbas, Muinak, Rybachie and other local water bodies in the Southern Aral Region; (4) assessment and analysis of the existing water management system in the delta of the Amu Darya River (with the focus on operability of gauging stations installed as part of the CAWa project to monitor water level and water surface area). Based on the expedition results, a report was prepared.

Negotiations were held with national agencies of Uzbekistan and international partners to mobilize financing for two comprehensive expeditions to study 1.5 million hectares of the dried Aral Sea bed in the territory of Uzbekistan and develop a geoinformation system in support of decision-making. In 2019-2020, SIC ICWC together with the International Innovation Center for the Aral Region under the President of Uzbekistan organized two expeditions to study the dried bed of the Aral Sea on an area of 1.2 million hectares with the support from the UN Multi-Partner Human Security Trust Fund for the Aral Sea region. At present, it is necessary to study the remaining part of the dried seabed. The political support is provided by the inclusion of the project "Development of environmental and water monitoring system in the Aral Sea region and on the dried sea bed" (Project 2.7) as a priority in the Aral Sea Basin Program (ASBP-4) which was approved by the IFAS Board decision of 29 June 2021 and supported by interest from the State Forestry Committee of Uzbekistan (in-coming No. 03/34-2051 dated 12.05.21), State Committee of Ecology of Uzbekistan (No. 03-02/3-313 dated 07.05.21) and Ministry of Innovations of Uzbekistan (No. 02-35/2873 dated 12.05.21). A request for assistance in including this work in the portfolio of projects for financing from the UN Multi-Partner Human Security Trust Fund for the Aral Sea region was submitted to the Ministry of Investments and Foreign Trade of the Republic of Uzbekistan and UNDP (ref. №105 of 09.07.21, ref. №110 of 31.07.21; ref. № 140 of 25.10.21).

SIC ICWC applied to the Ministry of Innovations of the Republic of Uzbekistan with a proposal to develop together with its German partner "Map Taylor" the methodology of RS-based assessment of drought-resistant trees on the dried Aral Sea bed using very high-resolution satellite images from the European Space Agency (ESA) (ref. №99 of 05.07.21).

SIC ICWC (Sh. Kenzhabaev) was included into the interdepartmental working group for organization of the International Conference dedicated transformation of the Aral Sea region into the zone of environmental innovation and technologies in November 2021 (PP RUz of 29.07.21, № 5202 "On measures for implementation of the special UN GA resolution of 18 May 2021 "On declaring the Aral Sea region a zone of environmental innovations and technologies").

6. Water diplomacy

The coverage of water issues in the statements made by the Central Asian countries at general debates of the UN General Assemblies from 1992 to 2020 was reviewed. For more details, see section "Scientific cooperation".

7. Scientific cooperation

As a follow up to the initiative on conducting joint interdisciplinary research on the basis of SIC ICWC and SIC ICSD, the Expert Platform on Water Security, Sustainable Development and Future Studies (EPFS) continued to be created and developed. The EPFS web-site was developed, www.cawater-info.net/expertplatform/. As part of the contract with UNECE for the project "Support to the Network of Russian Speaking Water Management Organizations in Eastern Europe, Caucasus and Central Asia": (1) International NWO EECCA videoconference "Transboundary Water Cooperation in the EECCA countries: Lessons Learned and Future Directions" (2-3 March) was held. A collection of EECCA papers "Experience of developing transboundary cooperation in EECCA countries" was published following the Conference; (2) a database of regional experts in various fields (water sector, agriculture, land resources, environment and ecology, energy etc.) was developed and put online for open use, filling and further development; (3) an analytical review of statements made by EECCA countries at UNGA - "Statements made by the Central Asian countries at the UN General Assembly in 1992-2020: Key highlights and priorities" (www.cawaterinfo.net/expert-platform/un-ga-1992-2020.htm) and "Environment and Transboundary Cooperation at the Statements made by the EECCA countries at the UN General Assembly in 1992-2020" (www.cawater-info.net/expertplatform/eecca-un-ga-1992-2020.htm) - was completed; (4) a case study of best practices on IWRM and transboundary water cooperation in EECCA countries was conducted and a collection of relevant papers was published.

Since 2018, SIC ICWC has been raising an issue on the need to strengthen the scientific potential of water community in Central Asia (appeals to the Deputy Prime Minister of Uzbekistan, ref. \mathbb{N} 01/01-09-13-166 of 22.01.2018 together with the Rector of TIIAME, Director of SIIWP; to universities, regional organizations of CA countries, ref. \mathbb{N} 45 of 12.02.2018, etc.). On 24 June 2021, an order (CM RUz Order \mathbb{N} 03/18-Yu-14-2/8506) was issued to consider the SIC application for financing science in the water sector (address to Mr. A.N. Aripov, Prime Minister of Uzbekistan, ref. \mathbb{N} 92 of 21.06.2021). A working group was formed among the representatives of the Ministry of Water Management of Uzbekistan, Ministry of Innovations of Uzbekistan, Ministry of Finance of Uzbekistan, SIC ICWC, TIIIAME, SIIWP and HydroIngeo (ref. No.02-35/3931 of 02.07.21) and its first meeting was held on July 15. During the meeting, SIC's Deputy Director Sh. Kenjabayev spoke about the state-of-affairs in science development in the water sector, outlined a list of the main thematic research areas in water, land reclamation and IWRM by to their relevance. Following the results of the meeting, it was decided to organize foresight with the involvement of experts from relevant ministries, departments and research institutes to form a portfolio of promising projects in the water sector for subsequent submission to the Government for possible financing.

8. ASBP-4

The IFAS Board meeting approved ASBP-4 (34 investment projects, implementation period - 2021-2030) - an important basis for the development and implementation of projects aimed at improving the environmental and socioeconomic situation in the region (June 29, Dushanbe). The decision stated that (1) EC IFAS together with ICWC and ICSD were to ensure implementation of ASBP-4; (2) EC IFAS was to monitor implementation of ASBP-4 and regularly inform the IFAS Board members on the progress.

As a contribution to ASBP-4 and to strengthen collaboration between the two IFAS Commissions, SIC ICWC and SIC ICSD, it was proposed to arrange joint development of a Regional Action Plan on Adaptation to Climate Change. The development of such a plan is envisaged in ASBP-4 (Project 2.1.1), as well as in the Road Map to the agreed Regional Environmental Program for Sustainable Development in Central Asia (REPSD CA).

In order to strengthen the coordinating role of ICWC in water issues, it is proposed to hear periodically at ICWC meetings the information on projects implemented with the involvement of development partners.

9. IFAS reformation

During the period under consideration, three meetings of the Working Group (WG) on institutional and legal improvement of IFAS were held: (1) 4th meeting, May 27, online: EC IFAS presented information on progress made, examples of structure, objectives and tasks of river basin commissions in different regions of the world (Sava, Nile, Mekong, Columbia river basins), discussed further steps to

be taken; (2) extraordinary meeting, August 16, online: the current situation was discussed, planning of further steps towards the 5th WG meeting was considered, and WG rules of procedure and work schedule were adopted; (3) 5th meeting, October 18, Dushanbe: comments and proposals to the draft Discussion Paper prepared by the WB group of international experts based on generalization of visions and proposals received from WG members on the 1st stage of IFAS improvement were discussed. The work process on the 2nd stage is focused on "identification of problems/deficiencies in the implementation of functions and tasks by IFAS agencies" (October 19, Dushanbe). Acting Director Ziganshina D.R. took part in WG meetings from SIC ICWC.

At the IFAS Board meeting (29 June, Dushanbe), EC IFAS information about WG activity was taken into account, with the following recommendation to intensify activities of WG, mobilize financing and attract international consultants.

As part of WG activity, SIC ICWC has prepared and presented (1) comments on the new statute of EC IFAS and its comparison with previously agreed documents on IFAS and the Executive Council (ref. N_{P} 65 of 06.05.21); (2) proposals as answers to the Questionnaire "IFAS objectives in light of existing agreements, new realities and requirements of State-Founders" on goals and objectives of IFAS and also vision and proposals on the first stage of IFAS improvement (ref. No 97 of 29.06.21; 02.09.21); (3) comments and proposals to the draft Discussion paper. The finalized version of the document will be submitted to EC IFAS for discussion on the 2nd stage of the process focused on "identification of problems/deficiencies in performance of functions and tasks by IFAS agencies".

DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA

1. ACTIVITIES OF THE EXECUTIVE COMMITTEE OF THE INTERNATIONAL FUND FOR SAVING THE ARAL FOR THE REPORTING PERIOD

22 February 2022

Dushanbe

1. Take into account the information about the activity of the Executive Committee of the International Fund for Saving the Aral Sea for the reporting period.

2. The Executive Committee of the International Fund for Saving the Aral Sea to continue activity on implementation of the IFAS Executive Committee Work Plan for the period of Tajikistan chairmanship and regularly inform the IFAS Board about the progress.

3. The interested ministries and departments, local authorities of the IFAS founders-states and agencies of the Fund to assist the Executive Committee of IFAS for successful organization of the expedition covering an area from flow formation zone to the Aral Sea (Syr Darya river basin) for young scientists and professionals.

Republic of Kazakhstan	R. Sklyar
Kyrgyz Republic	
Republic of Tajikistan	S. Ziyozoda
Turkmenistan	G. Baidjanov
Republic of Uzbekistan	Sh. Ganiev

DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA

2. PROGRESS OF THE ARAL SEA BASIN ACTION PROGRAM (ASBP-4)

22 February 2022

Dushanbe

1. Take into consideration the information on the progress in implementation of ASBP.

2. The Executive Committee of IFAS, ICWC and ICSD in collaboration with the ministries and agencies of the states-founders to intensify joint activity, also with the involvement of international partners, to ensure implementation of ASBP-4 and regularly inform the IFAS Board about the progress.

3. In order to monitor the implementation of ASBP-4, IFAS agencies and relevant ministries and departments of the founder states to provide information to the IFAS Executive Committee every six months.

Republic of Kazakhstan	R. Sklyar
Kyrgyz Republic	
Republic of Tajikistan	S. Ziyozoda
Turkmenistan	G. Baidjanov
Republic of Uzbekistan	Sh. Ganiev

DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA

3. ON ACTIVITIES OF THE WORKING GROUP FOR INSTITUTIONAL AND LEGAL IMPROVEMENT OF IFAS

22 February 2022

1. Take into consideration the information of the Executive Committee of the International Fund for Saving the Aral Sea about activities of the Working Group.

2. The Executive Committee of IFAS, the Interstate Commission for Water Coordination, the Interstate Commission for Sustainable Development and relevant ministries and agencies of the state-founders to intensify activity of the Working Group.

Republic of Kazakhstan	R. Sklyar
Kyrgyz Republic	
Republic of Tajikistan	S. Ziyozoda
Turkmenistan	G. Baidjanov
Republic of Uzbekistan	Sh. Ganiev

Dushanbe

DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA

4. ON PREPARATION TO THE 9TH WORLD WATER FORUM "WATER SECURITY FOR PEACE AND DEVELOPMENT"

22 February 2022

Dushanbe

1. Take into consideration the information of the Executive Committee of the International Fund for Saving the Aral Sea about preparation to the 9th World Water Forum.

2. Approve the Position paper of the Central Asian countries on priority themes of the Forum "9th World Water Forum: Central Asia for Peace and Development. Priorities, Actions and Tasks for the Future".

3. EC IFAS jointly with the Interstate Commission for Water Coordination and the Interstate Commission for Sustainable Development, with involvement of concerned ministries and departments of states-founders, to ensure rerepresentation of the Central Asia region at 9th World Water Forum at high level.

Republic of Kazakhstan	R. Sklyar
Kyrgyz Republic	
Republic of Tajikistan	S. Ziyozoda
Turkmenistan	G. Baidjanov
Republic of Uzbekistan	Sh. Ganiev

DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA

5. ON IMPLEMENTATION OF THE CENTRAL ASIA HYDROMETEOROLOGY MODERNIZATION PROJECT (CAHMP)

22 February 2022

Dushanbe

1. Take into consideration the information of the Executive Committee of the International Fund for Saving the Aral Sea about the implementation of the Central Asia hydrometeorology modernization project.

2. In order to ensure successful implementation of the CAHMP Project, as an exception, EC IFAS to continue implementation of the Project through the Corporate Fund "Regional Center of Hydrology" until completion of the Financing Agreement between EC IFAS and the International Development Association of December 3, 2019.

3. EC IFAS jointly with the Corporate Fund "Regional Center of Hydrology" and national hydrometeorological services to activate work on the Project.

Republic of Kazakhstan	R. Sklyar
Kyrgyz Republic	
Republic of Tajikistan	S. Ziyozoda
Turkmenistan	G. Baidjanov
Republic of Uzbekistan	Sh. Ganiev

DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA

6. ON IFAS PARTICIPATION IN THE SECOND HIGH-LEVEL CONFERENCE ON THE INTERNATIONAL DECADE OF ACTION "WATER FOR SUSTAINABLE DEVELOPMENT", 2018-2028. "CATALYZING WATER ACTION AND PARTNERSHIPS AT LOCAL, NATIONAL, REGIONAL AND GLOBAL LEVELS" 6-9 JUNE 2022, DUSHANBE, REPUBLIC OF TAJIKISTAN

22 February 2022

Dushanbe

1. Take note of information about IFAS participation in the Second International High-Level Conference on the International Decade for Action "Water for Sustainable Development, 2018-2028. Catalyzing Water Actions and Partnerships at Local, National, Regional and Global Levels" (6-9 June 2022, Dushanbe, Republic of Tajikistan).

2. Approve EC IFAS proposal on organization of a Central Asia Forum within the framework of the Second International High-Level Conference on the International Decade for Action "Water for Sustainable Development" 2018-2028.

3. EC IFAS with the involvement of interested ministries and agencies of the IFAS state-founders, development partners to organize a high-level Central Asia Forum and ensure active participation of the Fund agencies in the Second International High-level Conference on the International Decade for Action "Water for Sustainable Development", 2018-2028.

Republic of Kazakhstan	R. Sklyar
Kyrgyz Republic	
Republic of Tajikistan	S. Ziyozoda
Turkmenistan	G. Baidjanov
Republic of Uzbekistan	Sh. Ganiev

DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA

7. ON APPROVAL OF THE REGIONAL ENVIRONMENTAL PROGRAM FOR SUSTAINABLE DEVELOPMENT IN CENTRAL ASIA

22 February 2022

Dushanbe

1. Approve the Regional Environmental Program for Sustainable Development in Central Asia (REPSD CA).

2. The Interstate Commission for Sustainable Development (ICSD):

- jointly with environmental and economic agencies of Central Asian countries to ensure implementation of REPSD CA;

- carry out regular monitoring of REPSD CA implementation and inform IFAS Board and Executive Committee of IFAS about progress.

3. The IFAS Executive Committee to assist ICSD in attracting international partners to implementation of REPSD CA.

Republic of Kazakhstan	R. Sklyar
Kyrgyz Republic	
Republic of Tajikistan	S. Ziyozoda
Turkmenistan	G. Baidjanov
Republic of Uzbekistan	Sh. Ganiev

60

DECISION OF THE BOARD OF THE INTERNATIONAL FUND FOR SAVING THE ARAL SEA

8. ABOUT AGENDA OF THE NEXT MEETING OF THE IFAS EXECUTIVE BOARD

22 February 2022

Dushanbe

At the regular meeting of the Board of the International Fund for Saving the Aral Sea to consider the following matters:

- progress on ASBP-4;

- activity of the Working Group on institutional and legal improvement of IFAS;

- organization and holding of 30th IFAS Anniversary events;

- results of participation at the 9th World Water Forum and the Second International High-Level Conference on the International Decade for Action "Water for Sustainable Development" 2018-2028;

- Agenda of the next meeting of the IFAS Board.

Republic of Kazakhstan	R. Sklyar
Kyrgyz Republic	
Republic of Tajikistan	S. Ziyozoda
Turkmenistan	G. Baidjanov
Republic of Uzbekistan	Sh. Ganiev

Editorial Board:

D.R. Ziganshina I.F. Beglov

Editorial Office: Karasu-4, B-11 A, Tashkent, 100187, Republic of Uzbekistan, SIC ICWC

Our web-site:

sic.icwc-aral.uz