

проект "ИНТЕГРИРОВАННОЕ УПРАВЛЕНИЕ ВОДНЫМИ РЕСУРСАМИ В ФЕРГАНСКОЙ ДОЛИНЕ"

Применение минеральных удобрений под хлопчатник в условиях Ферганской долины

КОНТРОЛЬ ПИТАНИЯ ПО ВНЕШНЕМУ ВИДУ ХЛОПЧАТНИКА

При резко выраженном недостатке азота, фосфора и калия у хлопчатника появляются признаки, специфические для отдельных питательных элементов. Общим признаком, характерным для хлопчатника, испытывающего недостаток фосфора и азота, обычно является замедленный рост, слабое развитие плодовых органов, изменение окраски листьев и отмирание отдельных частей пластинки листа.

У хлопчатника, также как и у других растений, наиболее легко определить недостаток азота по желтовато-зеленой окраске листьев, которая при резком недостатке азота переходит в желтую, а затем в красную и бурую, после чего преждевременно листья усыхают. Признаки пожелтения наиболее достоверны для первой половины вегетации хлопчатника. В более поздний период роста пожелтение нижних листьев вызывается естественным их отмиранием. При недостатке азота светло-зеленая окраска начинается от жилок листа и распространяется на прилегающие к жилкам ткани. Плодовых ветвей образуется меньше, они короткие, а ростовые ветви совершенно отсутствуют.

При недостатке фосфора, также как и при недостатке азота, происходит замедленный рост хлопчатника. Листья имеют темно-зеленую окраску, обычно непохожую на темно-зеленую окраску листьев хлопчатника хорошо обеспеченного азотом, у них нет обычного отблеска зеленого листа, а образуется тускло-зеленая окраска.

При резком недостатке фосфора отмечается подсыхание тканей листа с побурением отмерших его частей. Недостаток фосфора проявляется даже на семядольных листочках в виде мелких темных пятен. У взрослого растения при недостатке фосфора коробочки образуются мелкие, вместо обычного веса у сорта 108 - Φ в 6 - 7 г, вес их падает до 4 г.

Резкий недостаток калия можно обнаружить, так же как и фосфора, на семядольных виде светло-коричневых пятен. В дальнейшем после образования настоящих листочков существенных различий в росте растений не наблюдается. Листья у взрослого растения при недостатке калия часто более крупные и жесткие, по сравнению с листьями хлопчатника, выращенного в условиях нормальной среды. В начале образования коробочек на листьях появляются характерные признаки недостатка калия. Первым внешним признаком калийного голодания у хлопчатника является желтоватая пятнистость листьев, при общей желтовато-зеленой окраске листа. Желтые пятна появляются между жилками, затем переходят в светло-коричневую окраску, и ткань в центре пятен отмирает, причем, верхушки и края листьев отмирают несколько раньше, чем центральная часть листовой пластинки. На фоне физиологического распада листа около жилок устойчиво сохраняется окраской ткани. По полоска с. ярко-зеленой мере развития заболевания весь лист постепенно становится бурым, засыхает и преждевременно опадает. Такой процесс физиологического заболевания хлопчатника является ярким показателем недостатка калия. признаки недостатка калия очень похожи на заболевание хлопчатника вилтом, но при калийном голодании у хлопчатника отсутствуют повреждения сосудов в стеблях растения.

ПРИМЕНЕНИЕ УДОБРЕНИЙ ПОД ХЛОПЧАТНИК

Нормы внесения минеральных удобрений устанавливают с учетом планируемого урожая, предшественника, эродированности и засоления почвы, содержания питательных элементов в ней и их биологического выноса урожаем.

На образование 1 т хлопка — сырца растение расходует в среднем 60 кг азота, 50 — калия и около 20 фосфора, причем тонковолокнистые сорта на 10 — 15 % больше, чем средневолокнистые.

Чтобы обеспечить оптимальные условия питания растений, ускорить их рост и развитие на типичных сероземах, рекомендуется применять следующие нормы азота (кг/га) с учетом

запланированного урожая хлопка — сырца: при 15-20 ц/га -100; 20-25 ц/га -150; 25-30 ц/га -200; 30-35 ц/га -250; 35-40 ц/га -300 и при 40-45 ц/га -350 кг/га (д.в.).

Нормы внесения азота на других почвах можно определить по шкале поправочных коэффициентов (табл. 1). Корректировку норм азота под хлопчатник проводят в зависимости от предшественника (табл. 2).

Таблица 1 Шкала поправочных коэффициентов для дифференцированного применения азотных удобрений под хлопчатник

Пояс типичных и темных сероземов	Коэффи- циент	Пояс светлых сероземов	Коэффи- циент	Почвы пустынной зоны	Коэффи- циент
Сероземы типичные, темные и лугово-сероземные	1,0	Сероземы светлые и лугово- сероземные	1,1	Такырные, лугово - такырные	1,2
Луговые	0,8	Луговые	0,9	Луговые	1,0
Луговые темные	0,7	Луговые, подверженные засолению в средней и слабой степени, систематически промываемые	1,1	Луговые, подверженные засолению, систематически промываемые	1,2
Маломощные, сильнодрениро- ванные и эродированные	1,2	Маломощные, сильнодрениро- ванные и эродированные	1,3	Маломощные, сильнодрени- рованные и эродированные	1,4

Корректировка норм азота в зависимости от предшественника

Таблица 2

Предшественник	Поправочный коэффициент
Кукуруза, пшеница	1,2
Пласт люцерны	0,6
Оборот пласта люцерны	0,8
Третий и последующие годы после распашки люцерны	1,0

Азотные удобрения используют дробно: 25-30~% годовой нормы — под весеннюю предпосевную обработку; 8-10~% - при посеве и оставшуюся часть — в 2-3 подкормки.

Перед посевом их вносят с помощью культиваторов типа KPX 4, KPX - 3,6 и KPT - 4, KXУ - 4, а так же чизелем - культиватором - удобрителем ЧКУ - 4 и ЧКУ - 4М на глубину 15 - 18 см; при посеве - удобрителями культиваторов, установленными на посевной агрегат. В последнем случае удобрения вносят на расстоянии 5-7 см от линии высева семян и на глубину не менее 12-15 см; наиболее эффективно применять аммофос.

Число подкормок устанавливают с учетом планируемого урожая, развития растений, количества удобрений, внесенных до посева, а так же наличия их в хозяйстве. Подкормки проводят в фазу двух — трех настоящих листочков, в период бутонизации и цветения — плодообразования. На маломощных, каменистых и песчаных почвах кратность подкормок увеличивается с трех до четырех — пяти. В каждую подкормку вносят не более 40 — 50 кг азота на 1 га(д.в.).

В связи с тем, что растения подкармливают в период высоких температур, когда верхний слой почвы быстро иссушается, их лучше вносить следующим образом: при появлении двух – четырех настоящих листочков — на расстоянии 15-18 см от ряда растений; в период бутонизации на расстоянии 20-22 см; во время цветения и начала плодообразования — в зависимости от ширины междурядий (при ширине 60 см — в его середину и при 90 см — на расстоянии 30-35 см от ряда растений). Во всех случаях удобрения вносят на 3-5 см ниже дна поливной борозды.

Оптимальный срок завершения подкормок – 20 – 25 – й день от начала цветения.

Эффективность фосфорных удобрений зависит от содержания подвижного фосфора в почве, поэтому нормы и сроки их внесения определяют на основе агрохимических картограмм с учетом соотношения с азотом (табл. 3).

Таблица 3 Рекомендуемое соотношение питательных веществ в удобрениях в зависимости от содержания в почве подвижного фосфора и обменного калия

Содержание подвижного фосфора, мг/кг почвы	Соотношение азота и фосфора	Содержание обменного калия, мг/кг почвы	Соотношение азота и калия
До 15	1:0,9	До 100	1:0,8
16 – 30	1:0,7	101 - 200	1:0,7
31 – 45	1:0,5	201 – 300	1:0,5
46 – 60	1:0,3	301 – 400	1:0,25
Более 60	1:0,1	Более 400	1:0,22

Фосфорные удобрения вносят в следующие сроки -60 - 70 % годовой нормы под основную вспашку и оставшуюся часть – при посеве и в период цветения хлопчатника.

Если в 1 кг почвы содержится до 15 мг подвижного фосфора, фосфорные удобрения вносят в три срока: под основную вспашку, одновременно с посевом и в период цветения; при содержании 16-30 и 31-45 мг/кг — применяют под вспашку и при посеве. На почвах, где содержится более 46 мг/кг подвижного фосфора, удобрения вносят только под вспашку, более 60 мг/кг — только при посеве хлопчатника.

Нормы калийных удобрений определяют в зависимости от количества обменного калия в почве и его соотношения с азотом (см. табл.).

Калийные удобрения вносят в следующие сроки — 50 % годовой нормы под вспашку и 50 % - в период бутонизации.

На почвах с недостаточным содержанием микроэлементов в начале бутонизации хлопчатника применяют медь и цинкосодержащий аммофос (100 – 150 кг/га).

В системе севооборотов органические удобрения вносят под вспашку на четвертый год после распашки поля люцерны $(30-40\ \text{т/гa})$.

При подкормках к минеральным удобрениям можно добавлять перепревший и просеянный навоз (сыпец) из расчета 2-2.5 кг на 1 кг аммиачной селитры.

Примерные годовые нормы минеральных удобрений (д.в.) под заданный уровень урожайности хлопчатника приведены в таблицах 4, 5, 6.

Таблица 4 Примерные годовые нормы минеральных удобрений (кг/га) в питательных элементах под хлопчатник в зоне предгорий (поясе светлых сероземов)

Урожай хлопка -	Сероземы, сероземно-луговые			Светло-луговые			емно-луговы угово-болотн			ные дрениро оованные поч галечниках		
сырца	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O
До 20	160	115	60	155	125	60	140	130	60	210	145	105
20 - 25	160-200	115-140	60-80	155-165	125-150	60-80	140-175	130-140	60-80	210-260	145-180	105-130
25 - 30	200-235	140-165	80-100	165-220	150-175	80-100	175-195	140-160	80-95	260-290	180-200	130-145
30 - 35	235-270	165-190	100-120	220-270	175-215	100-120	195-215	160-175	95-110	290-320	200-225	145-160
35 - 40	270-300	190-210	120-120	270-300	215-240	120-120	215-235	175-190	110-115	320-360	225-250	160-180
40 - 45	300-325	210-225	120-120	300-325	240-270	120-120	235-250	190-200	115-125	360-385	250-270	180-190

Таблица 5 Примерные годовые нормы минеральных удобрений (кг/га) в питательных элементах под хлопчатник в зоне предгорий (поясе типичных сероземов)

Урожай хлопка -	Сероземы, сероземно-луговые			Светло-луговые			`емно-луговь угово-болотн	_	дренирова	ощные из гал нные и эроді вы на галечн	ированные	
сырца	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O
До 20	160	110	50	150	105	45	140	110	40	200	140	50
20 - 25	160-195	110-135	50-60	150-175	105-145	45-75	140-170	110-135	40-50	200-245	140-170	50-75
25 - 30	195-220	135-155	60-65	175-215	145-170	75-80	170-200	135-160	50-60	245-290	170-200	75-90
30 - 35	220-260	155-180	65-80	215-245	170-195	80-80	200-235	160-190	60-70	290-315	200-220	90-95
35 - 40	260-295	180-205	80-90	245-275	195-220	80-80	235-250	190-200	70-75	315-360	220-250	95-110
40 - 45	295-320	205-225	90-95	275-300	220-240	80-90	250-275	200-220	75-80	360-385	250-270	110-115

Таблица 6 Примерные годовые нормы минеральных удобрений (кг/га) в питательных элементах под хлопчатник в зоне предгорий (поясе темных сероземов)

Урожай хлопка -	-			И	Темно-луговые и болотно -луговые			Маломощные дренированные и эродированные почвы на галечниках		
сырца	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	N	P_2O_5	K ₂ O	
До 20	160	110	60	140	125	50	210	145	70	
20 – 25	160-190	110-140	60-80	140-170	125-150	50-65	210-260	145-180	70-110	
25 – 30	190-215	140-165	80-100	170-190	150-170	65-85	260-290	180-200	110-125	
30 – 35	215-250	165-185	100-120	190-225	170-200	85-90	290-320	200-225	125-130	
35 – 40	250-290	185-210	120-120	225-260	200-235	90-100	320-360	225-250	130-130	
40 – 45	290-310	210-225	120-120	260-285	235-255	100-100	360-385	250-270	130-150	

Приведенные в таблицах 4, 5, 6 рекомендуемые нормы внесения N, P, K даны в питательных элементах (п.э.), иногда их называют действующим веществом (д.в.). В таблице 7 приведены данные по содержанию питательных элементов в различных минеральных удобрениях.

Переход (расчет) от питательных элементов к реальному физическому весу удобрения достаточно прост. Например: в аммиачной селитре содержится 33 % азота, т.е. в 100 кг этого удобрения содержится 33 кг чистого азота. Если нам необходимо внести в подкормку 50 кг / га чистого азота (д.в.) то расчет производится следующим образом:

$$X = \frac{100*50}{33} = 151$$
 кг удобрений

т.е. внесение $151~\rm kr$ /га физического веса аммиачной селитры обеспечит нам получение растениями $50~\rm kr$ /га.

ВНЕСЕНИЕ МИНЕРАЛЬНЫХ УДОБРЕНИЙ ПО КАРТОГРАММЕ

Если вы имеете картограмму по обеспеченности почвы макроэлементами, то можно использовать другой способ расчета норм внесения удобрений.

Обеспеченность почв подвижными элементами

Таблица 8

Степень обеспеченности почв	Содержание подвижных элементов, мг/кг почвы						
CTCHCHB OUCCHC TCHHOCTH HOTB	N	P ₂ O ₅	K ₂ O				
Очень низкая	5 – 15	5 – 15	Менее 100				
Низкая	16 - 30	16 - 30	100 - 200				
Средняя	31 – 45	31 – 45	200 - 300				
Повышенная	46 - 60	46 - 60	300 - 400				
Высокая	Выше 60	Выше 60	Выше 400				

Приведенные показатели обеспеченности почв элементами питания служат основанием для дифференцированного внесения удобрений по отдельным участкам в зависимости от наличия в почве питательных веществ.

В целях выявления степени обеспеченности почв того или иного хозяйства питательными веществами проводится агрохимическое обследование земель и составляются на основании массовых анализов агрохимические картограммы. Для этой цели со всей территории хозяйства с площади 2 - 5 га берется один смешанный образец, составленный из 10 индивидуальных. После проведения определений на содержание подвижных форм азота, фосфора и калия, результаты наносятся на карту, по которой брались образцы. Путем группировки участков с одинаковым содержанием питательных веществ вычеркивается агрохимическая картограмма, для каждого питательного элемента отдельно. Эти материалы служат основой для распределения удобрений по полям. Наряду с обеспеченностью почв элементами питания, необходимо учитывать общее плодородие их, окультуренность, агротехнический фон. Учитывая эти факторы, нормы удобрений устанавливаются в зависимости от величины планируемого урожая. Примерные годовые нормы удобрений под хлопчатник по почвенным поясам,

Таблица 7

Содержание питательных элементов в минеральных удобрениях

Название удобрения	Формула	Содержание питательных веществ, %		
	Азотные	удобрения		
Аммиачная селитра	NH ₄ NO ₃	33 – 35 % чистого азота (N)		
Натриевая селитра	NaNO ₃	15 – 16 % чистого азота (N)		
Кальциевая селитра	Ca(NO ₃) ₂	12 – 13 % чистого азота (N)		
Мочевина	Ca(NH ₂) ₂	42 – 46 % чистого азота (N)		
Сульфат аммония	(NH ₄) ₂ SO ₄	20 – 21 % чистого азота (N)		
	Фосфорны	е удобрения		
Суперфосфат простой	$Ca(H_2PO_4)_2 \times H_2O$	$15-19~\%$ растворимого фосфора (P_2O_5)		
Суперфосфат гранулированный	Ca(H ₂ PO ₄) ₂ x H ₂ O	$18-19~\%$ растворимого фосфора (P_2O_5)		
Преииритат	Na ₂ O x 3CaO x P ₂ O ₅	$38-40 \%$ растворимого фосфора (P_2O_5)		
	Калийные	удобрения		
Хлористый калий	KC1	50 – 60 % обменного калия (K ₂ O)		
Сернокислый калий	K ₂ SO ₄	48 – 52 % обменного калия (K ₂ O)		
Азотнокислый калий	KNO ₃	45 – 46 % обменного калия (K ₂ O)		
	Сложные	удобрения		
Аммофос Аmofos 11 % чистого азота (N) и 46 % растворим		11 % чистого азота (N) и 46 % растворимого фосфора (P ₂ O ₅)		
Диаммофос Diamofos 23 % чистого азота (N) и 45 % растворимого фосфора (P2)				

а внутри их для различных групп почв и разных величин урожая даются в рекомендациях по применению минеральных удобрений (Таб. 4,5,6). Дальнейшая дифференциация удобрений в зависимости от наличия в почвах питательных веществ осуществляется, исходя из норм, рекомендованных для данной зоны. На основе агрохимической картограммы вводится поправочный коэффициент для снижения или увеличения годовой нормы удобрений. В табл. 9 приводится дифференциация норм фосфорных удобрений в зависимости от содержания в почве подвижных фосфатов.

Таблица 9 Нормы внесения фосфора

Обеспеченность почв	Содержание	Нормы внесения фосфора, кг/га			
фосфором	Подвижного фосфора, мг/кг почвы	для урожая 25 – 30 ц/га	для урожая 35 – 40 ц/га		
Очень низкая	5 – 15	125	145		
Низкая	16 - 30	100	120		
Средняя	31 – 45	80	90		
Повышенная	46 - 60	50	60		
Высокая	Выше 60	25	30		

Годовые нормы удобрений в зависимости от величины их или от запасов питательного вещества в почве будут различными. Так, при низком содержании фосфора в почве и повышенной норме удобрений целесообразно внести 70% их под вспашку и 30% одновременно с севом. При высоком содержании фосфатов в почве и низкой норме все количество фосфорных удобрений можно внести одновременно с севом. При повышенных запасах фосфатов в почве целесообразно годовую норму фосфорных удобрений поровну внести в два срока 50% - под вспашку и 50% - одновременно с севом.

При установлении норм калийных удобрений наряду с содержанием в почве калия необходимо учитывать механический состав почв и обеспеченность другими элементами питания. Чем тяжелее механический состав почвы, тем выше потенциальная способность восполнять поглощенный растениями калий. В табл. 10 даны примерные годовые нормы калийных удобрений в зависимости от содержания калия в почве.

Таблица 10 Нормы внесения калия

Обеспеченность почв	Содержание	Нормы внесения калия, кг/га			
калием	подвижного калия, мг/кг почвы	для урожая 25 – 30 ц/га	для урожая 35 – 40 ц/га		
Очень низкая	100	100	120		
Низкая	100 - 200	80	100		
Средняя	200 - 300	60	80		
Повышенная	300 – 400	40	60		
Высокая	Выше 400	-	-		

При повышенных нормах калийных удобрений (80 кг/га и выше) 2/3 вносят под вспашку, а остальную часть - в бутонизацию хлопчатника; при средних нормах калия (60 - 80 кг/га) - половина вносится под вспашку и половина в бутонизацию. Небольшая норма калия целиком вносится в период бутонизации хлопчатника.

Засоленные земли не нуждаются в калийных удобрениях. Однако для получения высоких урожаев на хорошо промытых землях нужно вносить полную норму калия.

Наибольшее затруднение представляет дифференциация азотных удобрений по содержанию азота в почве. Это связано с высокой динамичностью нитратных и аммиачных

форм азота. Вместе с тем, исследованиями УзНИХИ за последние годы установлена возможность и целесообразность дифференцированного внесения азотных удобрений (табл. 11).

Таблица 11 Годовые нормы азотных удобрений в зависимости от величины подвижного азота в почве

Обеспеченность почв	Содержание	Нормы внесения азота, кг/га			
азотом	подвижного азота, мг/кг почвы	для урожая 25 – 30 ц/га	для урожая 35 – 40 ц/га		
Очень низкая	5 – 15	200	250		
Низкая	16 - 30	175	225		
Средняя	31 – 45	150	200		
Повышенная	46 - 60	125	175		
Высокая	Выше 60	100	150		

Распределение азотных удобрений по срокам внесения в зависимости от величины годовой нормы и содержания подвижных форм азота в почве приведено в табл. 12

Если до сева не были внесены азотные удобрения, их следует внести одновременно с севом, но не более 40 - $50~\rm kr/ra$.

Выбор формы азотных удобрений зависит от содержания в почве подвижных фосфора и калия. Аммиачный азот увеличивает поступление фосфора в хлопчатник. Поэтому на почвах с низким содержанием фосфора эти формы азотных удобрений увеличивают урожайность хлопчатника. На почвах с высоким содержанием фосфора лучше вносить аммиачную селитру, при высоком содержании калия - аммиачные и амидные формы азота, а при низком, наоборот, - нитратные и аммиачно-нитратные.

Распределение азотных удобрений по срокам внесения

Таблица 12

		Нормы внесения азота, кг/га									
	для урожая 25 – 30 ц/га			для урожая 35 – 40 ц/га							
Подвижный азот, мг/кг почвы	до сева	в бутони- зацию	в цветение	до сева	при 4-х настоящих листочках	в бутони- зацию	в цветение				
5 – 15	100	50	50	120	30	50	50				
16 - 30	75	50	50	90	30	50	50				
31 - 45	50	50	50	70	30	50	50				
46 - 60	35	40	50	70	-	50	50				
Выше 60	30	30	40	50	_	50	50				

План применения удобрений составляется непосредственно в хозяйствах с участием специалистов агрохимических лабораторий и хозяйства. Для установления норм удобрений для каждого конкретного участка или группы участков необходимо учитывать особенность почв, их окультуренность, агротехнический фон, планируемый урожай. Установленные с участием этих факторов нормы корректируются на основании данных агрохимических картограмм. Дальше годовая норма удобрений распределяется по срокам внесения. Наконец, в плане применения удобрений учитываются потребность хозяйства в различных удобрениях, на основании чего делается заявка на завоз удобрений.

Настоящие рекомендации подготовлены консультантомагрономом С.А. Нерозиным. В брошюре использованы материалы официальных источников информации, a также результаты «Повышение исследований, проведенных ПО деятельности продуктивности воды и земли на уровне фермерских хозяйств» в рамках проекта «ИУВР-Фергана». (Директор проекта В.А.Духовный, региональный В.И.Соколов, проекта менеджер руководитель деятельности Ш.Ш. Мухамеджанов)

Данная брошюра предназначена для широкого круга пользователей в сельском хозяйстве и, в частности, для агрономов консультативных служб, фермеров, заинтересованных в консультациях и практических рекомендациях.

По всем вопросам Вы можете обращаться в НИЦ МКВК:

к руководителю деятельности Мухамеджанову Шухрату Шакировичу (телефон 65-16-54);

консультанту агроному Нерозину Сергею Алексеевичу (65-16-58).

Адрес: г. Ташкент-187, Карасу-4, д.11 Телефон: 651654

Телефон: 651654 Факс: 652555, 651654 e-mail: <u>imwr@icwc-aral.uz</u>

e-man: <u>mwr@icwc-aran.t</u> www.icwc-aral.uz

12