

## Аналитическая записка НИЦ МКВК

№ 9, февраль 2025 г.

# Анализ водохозяйственной ситуации в бассейнах рек Амударья и Сырдарья за вегетационные периоды 2017-2024 годов

Авторы: И. Эргашев, Г. Хамдамова

### Введение

Рациональное использование водных ресурсов является одной из ключевых задач для стран Центральной Азии, особенно в условиях изменения климата, роста населения и увеличения спроса на воду в различных секторах экономики.

В данной аналитической записке представлен анализ водопользования в бассейнах рек Амударьи и Сырдарьи за вегетационный период с 2017 по 2024 годы с целью оценки текущего состояния и тенденций изменения соотношения фактического водозабора к плановому (выделяемым лимитам на водозабор).

### Тенденции по бассейнам рек

### Бассейн реки Амударья

У большинства стран бассейна фактический водозабор за вегетационный период часто не достигает плановых значений, что может свидетельствовать о низкой достоверности прогноза стока, а также о проблемах с водоснабжением, вызываемых дефицитом воды или рационализацией использования водных ресурсов. Соотношение фактического водозабора к плановому (далее «водообеспеченность») демонстрирует тенденцию к снижению в Туркменистане и Узбекистане. Это указывает на трудности в удовлетворении запланированных потребностей (см. табл.1).1

Таджикистан: У Таджикистана фактическое использование воды за вегетационный период с 2017 по 2021 годы составляло в среднем 88 % от планового водозабора. Водообеспеченность по Таджикистану за 2021-2024 годы выросла до 97%, в 2023 году наблюдается пиковое значение – 97%, а в 2024 году – снижение до 91%. Наблюдается тенденция роста водообеспеченности, лишь в 2024 году наблюдалось незначительное его снижение.

Научно-информационный центр Межгосударственной координационной водохозяйственной комиссии Центральной Азии (НИЦ МКВК)

Республика Узбекистан, 100187, г. Ташкент, м-в Карасу-4, стр. 11а

<sup>&</sup>lt;sup>1</sup> В таблице представлены данные о плановом (лимит) и фактическом водозаборе воды странами региона в бассейнах рек Амударья и Сырдарья за период с 2017 по 2024 годы

Туркменистан: В динамике изменения водообеспеченности по Туркменистану есть тенденция к небольшому снижению за вегетационный период с 2020 по 2022 годы (87%, 84%, 83% соответствен-но). В 2023 и 2024 годах наблюдалось некоторое восстановление водообеспеченности до 90%. Важно отметить, что фактический водозабор в Туркменистане, хотя и колеблется, остается достаточно высоким.

Узбекистан: В Узбекистане наблюдается наиболее выраженная тенденция к снижению водообеспеченности. Если в вегетационный период 2017 года водообеспеченность составляла 100%, то к 2022 году она снизилась до 69%. В 2023 и 2024 годах наблюдался небольшой рост до 72% и 79% соответственно, но общая тенденция остается нисходящей. Это может свидетельствовать не только о влиянии дефицита воды на уменьшение водообеспеченности, но и о серьезных усилиях страны по оптимизации водопользования и повышению эффективности орошения, усиления применения водосберегающих технологий. Возможно, также имеет место изменения в структуре экономики и снижение доли водоемких сельскохозяйственных культур.

### Зависимость водообеспеченности от водности рек

Водообеспеченность Таджикистана зависит от водности<sup>2</sup> рек Амударьи в меньшей степени, чем Туркменистана и Узбекистана, поэтому коэффициент корреляции (r)<sup>3</sup> слабый. Во-первых, Таджикистан забирает воду из трех рек, таких как Пяндж, Вахш и Кафирниган. Коэффициент корреляции (r) для Таджикистана равен r = -0,39. Это означает, что в Таджикистане при высокой водности реки Амударьи водообеспеченность снижается или, наоборот.

Зависимость водообеспеченности Туркменистана и Узбекистана от водности рек Амударьи высока, коэффициент корреляции Туркменистана и Узбекистана соответственно равен 0,82 и 0,83. Равная обеспеченность показывает о соблюдении Соглашения между Республикой Узбекистан и Туркменистаном «О сотрудничестве по водохозяйственным вопросам» (1996 г.).

Если оценивать водохозяйственное состояние стран по бассейну реки Амударья, у Таджикистана оно относительно стабильное; в Туркменистане наблюдаются некоторые колебания, но в целом ситуация остается контролируемой, требуется дальнейший мониторинг для выявления долгосрочных тенденций; Узбекистан демонстрирует наиболее выраженные усилия по оптимизации водопользования, что свидетельствует о стремлении к более устойчивому водохозяйственному развитию.

### Бассейн реки Сырдарья

Как и в случае с бассейном реки Амударья, в бассейне реки Сырдарья также наблюдаются колебания в водообеспеченности стран по руслу реки, однако общая тенденция выражена не так ярко, как в случае с Узбекистаном по Амударье. В цикле водообеспеченности есть периоды как снижения, так и роста водообеспеченности для разных стран (см.табл. 2), которая зависит от изменения в гидрологическом режиме реки, зарегулированном водохранилищами. Потребности сельского хозяйства — объемы водопотребления зависят от изменения площадей орошаемых земель и структуры посевов.

**Кыргызстан:** Соотношение фактического и планового водозабора показывает значительные колебания, снижение наблюдается в вегетационный период 2017 года с 76% до 57% в 2020 году, в 2023 году — постепенное восстановление до 70% и резкий скачок до 90% в 2024 году.

Казахстан: Водозабор осуществляется из канала «Дустлик». В водообеспеченности есть заметные колебания, в основном в пределах 66-101%. Пик наблюдается в вегетационный период 2017 года (101%), в последующие годы наблюдается снижение, а затем идёт стабилизация в пределах 77-79%.

Таджикистан: Водообеспеченность за вегетационный период в стране относительно стабильная, в пределах 75-84% до 2023 года. В вегетационный период 2024 года наблюдалось значительное снижение водообеспеченности до 69%. В апрелемае 2024 года в регионе выпало в значительном количестве осадков в виде дождя, по этой причине поступило малое количество заявок на орошение.

Узбекистан: Водообеспеченность показывает колебания, но в целом остается довольно высокой, в пределах 75-99%. Наблюдается снижение в вегетационный период 2019 года (75%) с последующим восстановлением и стабилизацией в пределах 85-88%.

С 2017 года ежегодно подписываются протоколы встреч руководителей водохозяйственных и энергетических ведомств Кыргызской Республики,

<sup>&</sup>lt;sup>2</sup> оценивается после слияния трех рек (Вахш, Пяндж и Кафирниган) в створе выше Гарагумдарьи

<sup>3</sup> линейная зависимость между водообеспеченностью страны и водностью рек

Республики Казахстан и Республики Узбекистан по вопросам водно-энергетического сотрудничества о согласовании графика сброса воды с Учкурганской ГЭС за вегетационный период, а также трехсторонний протокол подписывается узбекской, казахской и таджикской сторонами о дополнительных сбросах воды из водохранилища Бахри Точик за период с июня по август, благодаря чему водообеспеченность стран стабилизировалась.

### Зависимость водообеспеченности от водности рек

По всем государствам бассейна корреляционная зависимость водообеспеченности стран от водности имеет высокое значение.

Корреляционная зависимость водообеспеченности Кыргызстана составляет 0,47. Фактический водозабор за многолетний год (2017-2024 гг.) колебался от 141 до 244 млн м³. Причиной колебаний водозабора являются климатические условия за рассматриваемый период (большое количество осадков), из-за этого спрос на воду из реки Сырдарьи уменьшается.

Водозабор Казахстана из канала Дустлик полностью зависит от водности реки, корреляционный коэффициент равен 0,81. Колебания фактического водозабора относительно низкие в отличие от Кыргызстана.

Похожая ситуация наблюдается и по Узбекистану, так как корреляционный коэффициент равен 0,68.

# Оценка точности прогнозирования объемов притока воды в водохранилища (на примере Токтогульского, Андижанского и Чарвакского водохранилищ)

Рациональное управление водными ресурсами играет важную роль в устойчивом развитии регионов, особенно в условиях изменяющегося климата и растущего водопотребления. Точное прогнозирование объемов притока воды в водохранилища является важным инструментом для эффективного водопользования, планирования в сельском хозяйстве и энергетике, а также минимизации рисков, связанных с возможным дефицитом или избытком воды.

В данном исследовании проводится анализ точности прогнозирования объемов притока воды в три ключевых водохранилища — Токтогульское, Андижанское и Чарвакское — за период с 2017 по 2024 годы. Сопоставление прогнозных и фактических данных позволяет выявить закономерности отклонений и усовершенствовать методики прогнозирования.

Анализ данных показал, что фактические объемы притока в Токтогульское водохранилище в большинстве лет превышали прогнозные показатели, особенно в 2017 году (+14%), 2018 году (+13%), 2022 году (+11%) и 2024 году (+15%). Исключением стали 2019 и 2023 годы, когда фактические значения оказались ниже прогнозируемых на 6% (Таблица 3).

Тенденция изменения объемов притоков воды в Андижанском водохранилище оказалась нестабильной. В 2017 году фактический приток воды превысил прогнозируемый на 28%, а в 2022 году — на 41%. Однако в 2019, 2020 и 2023 годах наблюдалось значительное отставание от прогнозных значений, особенно в 2020 году, когда разница достигла 42% в сторону уменьшения.

В Чарвакском водохранилище в 2017 году фактический приток воды был на 41% выше прогнозного, а в 2019 году — на 14%. В остальные годы чаще наблюдалось занижение прогнозов, наиболее значительное в 2020 (-15%) и 2023 (-16%) годах.

Если рассматривать суммарный приток воды по трем основным рекам — Нарын, Карадарья, Чирчик — то в целом фактические объемы чаще превышали прогнозные значения, особенно в 2017, 2022 и 2024 годах. Максимальное отклонение в сторону увеличения было зафиксировано в 2017 году (+24%). В 2021 году прогнозные и фактические показатели практически совпали (разница 0%), тогда как в 2020 и 2023 годах фактические притоки оказались ниже прогнозных на 10% и 13% соответственно.

#### Заключение

Большинство стран демонстрируют снижение соотношения фактического водозабора к плановому, что указывает на проблемы с доступностью водных ресурсов и их распределением и низкой достоверности прогноза стока.

Особенно остро стоят проблемы водообеспечения в Туркменистане, Казахстане и Узбекистане, где снижение водообеспеченности за последние годы наиболее заметно. Снижение доступности воды в регионе связано с колебаниями водности и её снижением вызванным, изменением климата.

Анализ водохозяйственной ситуации показал, что в данном направлении необходимо проводить следующие мероприятия: оптимизация использования воды (инвестировать в модернизацию ирригационных систем для сокращения потерь воды), международное сотрудничество (разработка совместных программ стран региона по рациональному использованию водных ресурсов), мониторинг и прогнозирование (создание систем мониторинга водных ресурсов для оперативного реагирования на изменения в их доступности), адаптация к изменению климата (разработка стратегий и мэр, учитывающих климатические риски, для повышения устойчивости водохозяйственных систем).

Прогнозы притока к Токтогульскому водохранилищу, как правило, оказываются заниженными, за исключением 2019 и 2023 годов. Это указывает на необходимость уточнения методологии прогнозирования.

Для Андижанского водохранилища характерны значительные колебания отклонений фактического притока от прогнозных значений.

В случае Чарвакского водохранилища прогнозы притока чаще оказываются завышенными, особенно в 2020 и 2023 годах. Однако в 2017 и 2019 годах фактический приток значительно превысил прогнозируемый.

Таблица 1. Плановые (лимит) и фактические водозаборы стран по бассейну реки Амударья

| Страна                                      | Показатель                                       | Ед.изм.                           | Годы  |       |       |       |       |       |       |       |            |
|---------------------------------------------|--------------------------------------------------|-----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------|
|                                             |                                                  |                                   | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | Корреляция |
| Таджикистан                                 | Плановый водозабор                               | <b>м</b> лн <b>м</b> <sup>3</sup> | 6943  | 6753  | 6951  | 6952  | 6953  | 6963  | 6958  | 6982  |            |
|                                             | Фактический водозабор                            | млн м³                            | 5980  | 6186  | 5999  | 6137  | 6236  | 6640  | 6782  | 6326  | -0,28      |
|                                             | Соотношение фактического и планового водозаборов | %                                 | 86    | 92    | 86    | 88    | 90    | 95    | 97    | 91    | -0,39      |
| Туркменистан                                | Плановый водозабор                               | млн м <sup>3</sup>                | 15500 | 15003 | 15500 | 15500 | 15500 | 15500 | 15500 | 15500 |            |
|                                             | Фактический водозабор                            | млн м <sup>3</sup>                | 14838 | 13005 | 14696 | 13512 | 12986 | 12911 | 13969 | 13960 | 0,87       |
|                                             | Соотношение фактического и планового водозаборов | %                                 | 96    | 87    | 95    | 87    | 84    | 83    | 90    | 90    | 0,82       |
| Узбекистан                                  | Плановый водозабор                               | млн м <sup>3</sup>                | 17220 | 16775 | 17220 | 17220 | 17220 | 17220 | 17220 | 17220 |            |
|                                             | Фактический водозабор                            | млн м <sup>3</sup>                | 17179 | 12674 | 15427 | 12856 | 12162 | 11826 | 12439 | 13543 | 0,85       |
|                                             | Соотношение фактического и планового водозаборов | %                                 | 100   | 76    | 90    | 75    | 71    | 69    | 72    | 79    | 0,83       |
| Водность реки<br>(по створу Условный Керки) |                                                  | млн м³                            | 20256 | 37108 | 46622 | 37321 | 40555 | 40695 | 42879 | 43284 |            |

Таблица 2. Плановые (лимит) и фактические водозаборы стран по бассейну реки Сырдарья

| Страна                                                          | Показатель                                       | Ед.изм.                    |       |       |       |       |       |       |       |       |            |
|-----------------------------------------------------------------|--------------------------------------------------|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------|
|                                                                 |                                                  |                            | 2017  | 2018  | 2019  | 2020  | 2021  | 2022  | 2023  | 2024  | Корреляция |
| Кыргызстан                                                      | Плановый водозабор                               | млн м <sup>3</sup>         | 246   | 246   | 246   | 246   | 246   | 246   | 270   | 270   |            |
|                                                                 | Фактический водозабор                            | млн м <sup>3</sup>         | 188   | 196   | 165   | 141   | 144   | 188   | 188   | 244   | 0,36       |
|                                                                 | Соотношение фактического и планового водозаборов | %                          | 76    | 80    | 67    | 57    | 59    | 64    | 70    | 90    | 0,47       |
| Казахстан                                                       | Плановый водозабор                               | млн м <sup>3</sup>         | 732   | 705   | 918   | 878   | 903   | 903   | 920   | 921   |            |
|                                                                 | Фактический водозабор                            | <b>м</b> лн м <sup>3</sup> | 739   | 613   | 602   | 610   | 698   | 701   | 704   | 728   | 0,50       |
|                                                                 | Соотношение фактического и планового водозаборов | %                          | 101   | 87    | 66    | 69    | 77    | 78    | 77    | 79    | 0,81       |
| Таджикистан                                                     | Плановый водозабор                               | <b>м</b> лн м <sup>3</sup> | 1905  | 1905  | 1905  | 1905  | 1905  | 1905  | 1905  | 1905  |            |
|                                                                 | Фактический водозабор                            | <b>м</b> лн м <sup>3</sup> | 1592  | 1606  | 1557  | 1455  | 1495  | 1560  | 1436  | 1312  | 0,34       |
|                                                                 | Соотношение фактического и планового водозаборов | %                          | 84    | 84    | 82    | 76    | 78    | 82    | 75    | 69    | 0,34       |
| Узбекистан                                                      | Плановый водозабор                               | млн м <sup>3</sup>         | 8880  | 8880  | 8799  | 8880  | 8880  | 8880  | 8880  | 8880  |            |
|                                                                 | Фактический водозабор                            | млн м <sup>3</sup>         | 8673  | 8295  | 6639  | 6699  | 7611  | 7756  | 7479  | 7566  | 0.68       |
|                                                                 | Соотношение фактического и планового водозаборов | %                          | 99    | 84    | 75    | 76    | 86    | 88    | 85    | 86    | 0.68       |
| Водность реки (по сумме трех рек:<br>Нарын, Карадарья и Чирчик) |                                                  | млн м³                     | 26209 | 17018 | 16992 | 14278 | 14344 | 18015 | 15459 | 18229 |            |

Таблица 3. Прогнозные и фактические притоки к верхним водохранилищам в бассейне реки Сырдарья

| Водохранилище | _                         | Единицы         | Годы |      |      |      |      |      |      |      |  |
|---------------|---------------------------|-----------------|------|------|------|------|------|------|------|------|--|
|               | Показатель                | измерения       | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |  |
| Токтогульское | Прогнозный                | KM <sup>3</sup> | 11,7 | 8,8  | 9,8  | 8,7  | 8,2  | 9,4  | 9,8  | 9,3  |  |
|               | Фактический               | KM <sup>3</sup> | 13,4 | 9,9  | 8,8  | 8,7  | 8,8  | 10,4 | 9,2  | 10,7 |  |
|               | Отклонение от прогноза    | %               | 14   | 13   | -6   | 0    | 7    | 11   | -6   | 15   |  |
| Андижанское   | Прогнозный                | KM <sup>3</sup> | 3,2  | 2,6  | 2,7  | 2,1  | 1,8  | 2,1  | 3,0  | 2,4  |  |
|               | Фактический               | KM <sup>3</sup> | 4,1  | 2,5  | 1,9  | 1,2  | 1,7  | 3,0  | 2,1  | 2,5  |  |
|               | Отклонение от<br>прогноза | %               | 28   | -4   | -27  | -42  | -3   | 41   | -31  | 2    |  |
| Чарвакское    | Прогнозный                | KM <sup>3</sup> | 6,2  | 5,3  | 5,5  | 5,2  | 4,4  | 4,6  | 5,0  | 4,9  |  |
|               | Фактический               | KM <sup>3</sup> | 8,7  | 4,7  | 6,2  | 4,4  | 3,9  | 4,6  | 4,2  | 5,1  |  |
|               | Отклонение от прогноза    | %               | 41   | -12  | 14   | -15  | -13  | 0    | -16  | 4    |  |
| Сумма 3-х рек | Прогнозный                | KM <sup>3</sup> | 21,1 | 16,7 | 17,5 | 15,9 | 14,4 | 16,1 | 17,8 | 16,6 |  |
|               | Фактический               | KM <sup>3</sup> | 26,2 | 17,0 | 17,0 | 14,3 | 14,3 | 18,0 | 15,5 | 18,2 |  |
|               | Отклонение от<br>прогноза | %               | 24   | 2    | -3   | -10  | 0    | 12   | -13  | 10   |  |