

Научные записки НИЦ МКВК

Nº 11

2021

Г.В. Стулина, М. Горбачева

Изучение микробных сообществ в почвах осушенного дна Аральского моря

Научно-информационный центр Межгосударственной координационной водохозяйственной комиссии Центральной Азии

Стулина Г.В., Горбачева М.

ИЗУЧЕНИЕ МИКРОБНЫХ СООБЩЕСТВ В ПОЧВАХ ОСУШЕННОГО ДНА АРАЛЬСКОГО МОРЯ

Введение¹

Проведение микробиологических исследований почв дают представление об особенностях микробиологических процессов, происходящих в конкретных почвах — биологической иммобилизации, азотфиксации, денитрификации, фосформобилизации и др., т.е. факторах, необходимых для прогнозирования состояния почв.

Нами изучена численность основных таксономических и экологотрофических групп почвенных микроорганизмов дна Аральского моря, принимающих участие в круговороте углерода, азота, фосфора, и других макро-микроэлементов — аммонификаторов, нитрификаторов 1 и 2 фазы, азотфиксаторов, денитрификаторов, олигонитрофилов, фосформобилизующих, целлюлозоразлагающих аэробов и анаэробов, микромицетов (микроскопических грибов) и актиномицетов.

Объекты исследования

Объектами исследования является почвенный покров части осушенного дна Аральского моря. В процессе экспедиции, которая проводилась в 2010 году, были выбраны типичные ландшафты в трансекте от моря до материковой части. На выбранных типовых площадках заложены почвенные разрезы, выполнено морфологическое описание и отобраны почвенные образцы. Химический анализ состава водной вытяжки, элементов, гранулометрический состав питательных выполнялись общепринятым методикам. Микробиологический состав определялся в Московском Государственном Университете им. М.В. Ломоносова.

_

¹ Галина Стулина, Научно-информационный центр МКВК Мария Горбачева, Московский Государственный Университет им. М.В. Ломоносова

Методика проведения микробиологических анализов почв

Для определения численности аммонификаторов, олигонитрофилов, азотфиксаторов, фосформобилизующих бактерий, микромицетов и актиномицетов исследования проводили на твердых агаризованных элективных питательных средах в три этапа:

- приготовлении серии разведений почвенной взвеси;
- посев на агаризованные элективные питательные среды;
- определение числа выросших колоний.

Для анализа брали 10 г почвы и вносили ее в колбочки на 250 мл, содержащих 100 мл стерильной водопроводной воды. Почвенную взвесь взбалтывали, затем 30 секунд отстаивали, затем стерильной пипеткой емкостью 2 мл суспензии вносили в пробирки с 18 мл стерильной воды. Полученную суспензию перемешивали встряхиванием, чистой пипеткой отбирали снова 2 мл жидкости и переносили ее в пробирку, также содержащую 18 мл воды. Эту операцию повторяли 6 раз. Пробирки с разведениями надписывали. Разведения готовили с таким расчетом, чтобы концентрация каждого последующего члена серии разведений была в 10 раз меньше концентрации предыдущего. Затем делали посев в чашки Петри по 1 мл суспензии, начиная с суспензии наибольшего разведения, обозначая ее степень на чашках Петри. Затем расплавленные агаризованные питательные среды остужали до температуры 45°C и добавляли их в чашки Петри и осторожными круговыми движениями смешивали с исследуемой суспензией. После застывания агара перевернутые чашки Петри помещали в термостат и инкубировали их в течение 2 суток для аммонификаторов, в течение 7 суток для определения олигонитрофилов и 10-15 суток – для определения микромицетов, актиномицетов.

По истечении соответствующего времени инкубации отбирали посевы 5 и 6 разведения — для аммонификаторов, 2-3 разведения — для олигонитрофилов, микромицетов и актиномицетов, и подсчитывали число колоний, выросших на агаре. При подсчете чашку Петри переворачивали вверх дном, ее поверхность разделяли вертикальными линиями на четыре или шесть или восемь частей, в зависимости от количества выросших колоний и определяли общее число колоний образующих единиц (кое). Пересчет числа бактерий, микромицетов и актиномицетов вели на 1г абс.сухой почвы по следующей формуле:

$$a = \frac{\delta \cdot B \cdot \Gamma}{\pi}$$

где

а – количество клеток в 1 г почвы

б – среднее количество колоний на чашке,

в – разведение, из которого сделан посев,

г – количество капель в 1 мл суспензии

д – вес воздушно-сухой почвы, взятой для анализа.

Определение числа нитрификаторов 1 и 2 фазы, целлюлозоразлагающих аэробных и анаэробных, денитрификаторов (с агаром) проводили методом предельных разведений, но только путем высева почвенной суспензии в пробирки с жидкими элективными питательными средами. Пересчет численности микроорганизмов вели на 20-25 сутки по таблице Мак-Креди (Большой практикум по микробиологии под ред. Селибера, 1986, 405 с).

Для анализов использовали следующие элективные питательные среды (Звягинцев Д.Г. Методы почвенной микробиологии и биохимии, Москва, 1991, 303 c):

- среда РПА для аммонификаторов
- среда Эшби для олигонитрофилов и азотфиксирующих бактерий;
- среда Пиковской для фосформобилизующих бактерий;
- среда Чапека для микромицетов и актиномицетов;
- среда Гетчинсона и Клейтона для целлюлозоразлагающих аэробных микроорганизмов;
- среда Омелянского для целлюлозоразлагающих анаэробных микроорганизмов;
- среда Гильтая для денитрификаторов;
- среда Сориано и Уокера для нитрификаторов 1 фазы;

- среда Ватсона и Уотербери для нитрификаторов 11 фазы;
- среда Виноградского для анаэробных азотфиксирующих бактерий.

Результаты исследований

Результаты по численности основных таксономических и экологотрофических групп почвенных микроорганизмов представлены в таблице 1.

На рисунке рис. 1 приводится фотография ландшафта разреза № 801. На рис. 2. представлена численность микробного сообщества образца почвы № 801. Видно, что численность микроорганизмов находится почти в всех 3-x образцах, исключением одинаковом количестве во за олигонитрофилов, количество которых на 1 порядок ниже (10^5 кое/г почвы) в 3м образце (P801 91-120 см) по сравнению с 1 и 2 образцами (10^6 кое/г почвы) и целлюлозоразлагающих анаэробных м/о численность которых на 2 порядка ниже (10^4 кое/г почвы) во 2м (2-38 см) и 3м образцах (Р801 91-120 см) по сравнению с 1 образцом (10^6 кое/г почвы). Денитрификаторы были обнаружены только в 1 образце (0-2 см), их количество составляло 10^2 кое/г почвы, а во 2 и 3м образцах они не были обнаружены. Фосформобилизующие бактерии, нитрификаторы 1 и 2 фазы, и денитрификаторы не были обнаружены, что свидетельствует о том, что в этих образцах не происходят процессы круговорота фосфора и азота. Отсутствие грибов и актиномицетов свидетельствует о том, что процессы деструкции сложных полимерных соединений в почве тоже отсутствуют. Наличие аммонификаторов и целлюлозоразлагающих микроорганизмов свидетельствует о процессах разложения азотсодержащих органических веществ в этих образцах.

По хим. составу почвы образца N = 801 слабо щелочные, бедны гумусом, очень низко обеспечены подвижными формами азота, фосфора и калия. Растворимые ионы содержатся в следовых количествах.

Таблица 1 Численность основных таксономических и эколого-трофических групп почвенных микроорганизмов почв Приаралья (кое/г почвы, 2011 г.)

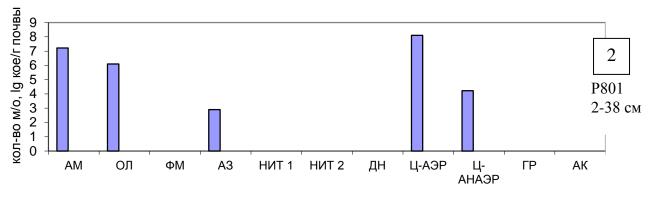
	Варианты опыта	Аммони фикаторы	Фосфор- мобилизующие	Олиго- нитрофилы	Микро-мицеты	Актино- мицеты
1	801, 0-2см	$3.0x10^7$	Не обн	$1,0x10^6$	Не обн	Не обн
2	Р801, 2-38см	$2,2x10^{7}$	Не обн	$1,5x10^4$	Не обн	Не обн
3	Р801, 91-120см	$7,5x10^6$	Не обн	$2,2x10^5$	Не обн	Не обн
4	Р804, с пов. под кустом	$1,5x10^{7}$	Не обн	$4,5x10^6$	Не обн	Не обн
5	805, с пов.	Не обн.	Не обн	$3,7x10^5$	Не обн	Не обн
6	Р806, 0-1,5см	$7,5x10^6$	Не обн	$1,0x10^6$	$7,5x10^3$	Не обн
7	Р806, 4-10см	$7,5x10^6$	Не обн	$7,5x10^5$	Не обн	Не обн
8	P806, 10-32	$1,4x10^8$	Не обн	$7,5x10^6$	$7,5x10^3$	Не обн
9	Р807, 0-1,5см	$1,4x10^8$	$9,0x10^6$	6.0×10^6	Не обн	$6,7x10^5$
10	Р807, 10-32см	$1,9x10^8$	Не обн	$2,1x10^6$	$6.0x10^4$	$2,2x10^4$
11	Р810,0-5см	Не обн.	Не обн	Не обн.	Не обн	$7,5x10^3$
12	Р810, 0-5см под деревом	$1,5x10^{7}$	Не обн	3.0×10^5	Не обн	Не обн
13	Р812, 0-1,5см	3.0×10^7	Не обн	$7,5x10^3$	Не обн	Не обн
14	Р812, 1,5-8см	$6,7x10^{7}$	Не обн	$3.0x10^4$	Не обн	$7,5x10^3$
15	P812, 0-1,5; 1,5-8см около дерева	1,5x10 ⁷	Не обн	Не обн.	Не обн	Не обн
16	Р812, 8-26см	$7,5x10^6$	Не обн	$7,5x10^4$	Не обн	Не обн
17	Р813,0-0,3; 0,3-11см	7.5×10^5	Не обн	$7,5x10^4$	Не обн	Не обн
18	P813, 0-0,3; 0,3-11см около дерева	$8,2x10^7$	Не обн	Не обн.	Не обн	Не обн
19	Р814, 0-0,5см	$1,5x10^{7}$	Не обн	7.5×10^4	Не обн	Не обн
20	Р814, 0,5-25см	Не обн.	Не обн	$3,7x10^5$	Не обн	$7,5x10^3$

Варианты опыта		Аммони фикаторы	Фосфор- мобилизующие	Олиго- нитрофилы	Микро-мицеты	Актино- мицеты
21	Р815, 0-20см	3.0×10^5	Не обн	$1,5 \times 10^5$	$7,5x10^3$	7.5×10^3
22	Р815, 0-20см около дерева	$7,5x10^6$	Не обн	$7,5x10^4$	Не обн	Не обн
23	Р817, 0-0,2см	$2,2x10^7$	Не обн	$1,5 \times 10^5$	Не обн	Не обн
24	Р817,0,2-10см	6.0×10^7	Не обн	$1,1x10^6$	Не обн	$7,5x10^3$

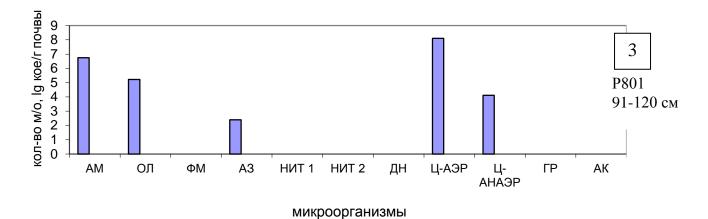
Продолжение таблицы 1

	Варианты опыта	Целлюлозо- разлагающи е (аэробы)	Целлюлозо- разлагающи е (анаэробы)	Денитрифи- каторы	Нитрифи- каторы I фаза	Нитрифи- каторы II фаза	Азотфикса- торы (анаэробы)
1	801, 0-2см	$1,0x10^8$	$1,1x10^6$	$4.0x10^2$	Не обн	Не обн	7.0×10^2
2	Р801, 2-38см	$1,0x10^8$	$2,2x10^4$	Не обн	Не обн	Не обн	$9,0x10^2$
3	Р801, 91-120см	$1,0x10^8$	$1,1x10^4$	Не обн	Не обн	Не обн	$4.0x10^2$
4	Р804, с пов. под кустом	$1,8x10^6$	$4.0x10^2$	Не обн	Не обн	Не обн	$9,0x10^2$
5	805, с пов.	$8,2x10^6$	$1,1x10^4$	Не обн	Не обн	Не обн	$4.0x10^2$
6	Р806, 0-1,5см	$8,2x10^6$	$1,5x10^4$	Не обн	Не обн	Не обн	$4.0x10^2$
7	Р806, 4-10см	$1,0x10^8$	$1,1x10^6$	Не обн	Не обн	Не обн	$1,1x10^4$
8	P806, 10-32	$1,0x10^8$	$8,2x10^6$	Не обн	Не обн	Не обн	$9.0x10^2$
9	Р807, 0-1,5см	$1,0x10^8$	$2,2x10^4$	Не обн	Не обн	Не обн	4.0×10^2
10	Р807, 10-32см	$1,0x10^8$	$3,3x10^5$	Не обн	Не обн	Не обн	Не обн.
11	Р810, 0-5см	$1,0x10^8$	$8,2x10^6$	Не обн	Не обн	Не обн	Не обн.
12	Р810, 0-5см под деревом	$1,0x10^8$	$2,6x10^5$	$4.0x10^2$	Не обн	Не обн	Не обн.
13	Р812, 0-1,5см	$8,2x10^6$	$1,1x10^5$	Не обн	Не обн	Не обн	$9,0x10^2$
14	Р812, 1,5-8см	$1,0x10^8$	$7,1x10^5$	$4.0x10^2$	Не обн	Не обн	1,1x10 ⁴
15	P812, 0-1,5; 1,5-8 см около дерева	8,2x10 ⁶	$4.0x10^2$	4.0×10^2	Не обн	Не обн	$4,0x10^2$
16	Р812, 8-26см	$8,2x10^6$	$3,3x10^6$	Не обн	Не обн	Не обн	4.0×10^2

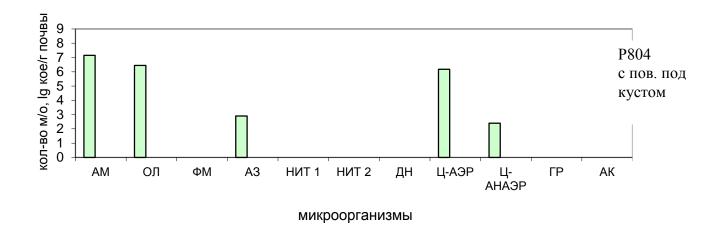
	Варианты опыта	Целлюлозо- разлагающи е (аэробы)	Целлюлозо- разлагающи е (анаэробы)	Денитрифи- каторы	Нитрифи- каторы I фаза	Нитрифи- каторы II фаза	Азотфикса- торы (анаэробы)
17	Р813, 0-0,3; 0,3-11см	$3,3x10^6$	1.8×10^4	Не обн	Не обн	Не обн	$4.0x10^2$
18	P813, 0-0,3; 0,3-11см около дерева	$3,3x10^6$	1,1x10 ⁴	4.0×10^2	Не обн	Не обн	$4,0x10^2$
19	Р814, 0-0,5см	$1,0x10^8$	$1,5x10^5$	Не обн	Не обн	Не обн	$1,1x10^4$
20	Р814, 0,5-25см	$1,0x10^8$	$3,3x10^6$	4.0×10^2	Не обн	Не обн	$4.0x10^2$
21	Р815, 0-20см	$1,0x10^8$	Не обн.	4.0×10^2	Не обн	Не обн	$7,0x10^3$
22	Р815, 0-20см около дерева	$1,0x10^8$	$8,2x10^5$	Не обн	Не обн	Не обн	$7,0x10^3$
23	Р817, 0-0,2см	$1,0x10^8$	7.1×10^5	Не обн	Не обн	Не обн	$4,0x10^2$
24	Р817, 0,2-10см	$1,0x10^8$	10^{6}	Не обн	Не обн	Не обн	$1,1x10^4$


Рис. 1. Ландшафт разреза 801

образце 804 В $N_{\underline{0}}$ численность микробного сообщества микробиологические процессы схожи с образцами № 801 (1 и 2), за исключением более низкого содержания на (1-2)целлюлозоразлагающих м/о. В образце № 805 не были обнаружены аммонификаторы, а численность олигонитрофилов составляла 10^5 кое/г свидетельствует о процессах ускоренной минерализации органических веществ в этом образце. Фосформобилизующие бактерии, нитрификаторы 1 и 2 фазы, и денитрификаторы не были обнаружены, что свидетельствует о том, что в этих образцах не происходят процессы аммонификаторов круговорота фосфора И азота. Наличие целлюлозоразлагающих микроорганизмов свидетельствует о процессах разложения азотсодержащих органических веществ в этих образцах (рис. 3).


Численность аммонификаторов в образце № 806 (1 и 2) составляла 10^6 кое/г почвы, целлюлозоразлагающих аэробных м/о -10^6 кое/г почвы, анаэробных — 10^4 кое/г почвы, что свидетельствует о слабых процессах разложения органического вещества в этих образцах, в отличие от 3 образца, где число аммонификаторов, целлюлозоразлагающих аэробных (10^8 кое/г почвы) и анаэробных м/о (10^6 кое/г почвы) было на 2 порядка выше, что свидетельствует о повышении процесса деструкции. Фосформобилизующие бактерии, нитрификаторы 1 и 2 фазы, и денитрификаторы не были обнаружены, что свидетельствует о том, что в этих образцах не происходят процессы круговорота фосфора и азота (рис. 4, 5).

микроорганизмы



микроорганизмы

АМ – аммонификаторы, ОЛ- олигонитрофилы, ФМБ – фосформобилизующие бактерии, АЗ – азотфиксаторы анаэробы, ЦАЭ – целлюлозоразлагающие аэробы, ЦАНАЭ – целлюлозоразлагающие анаэробы, НИТ1 – нитрификаторы 1фазы, НИТ2 – нитрификаторы 2 фазы, ДН – денитрификаторы, АК – актиномицеты, МИК - микромицеты

Рис. 2. Численность микробного сообщества в почвенном образце № 801

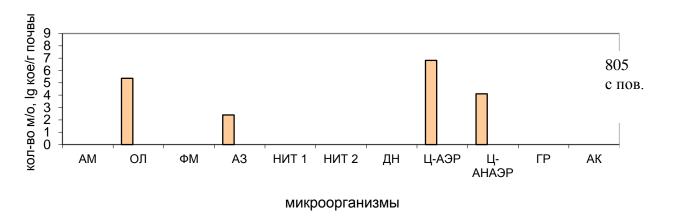


Рис. 3. Численность микробного сообщества в почвенных образцах № 804 и 805

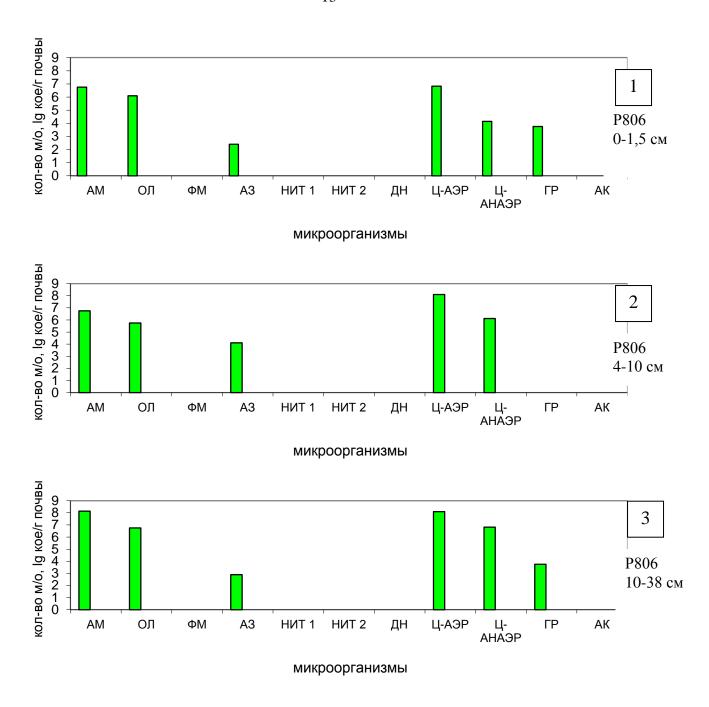


Рис. 4. Численность микробного сообщества в почвенных образцах № 806

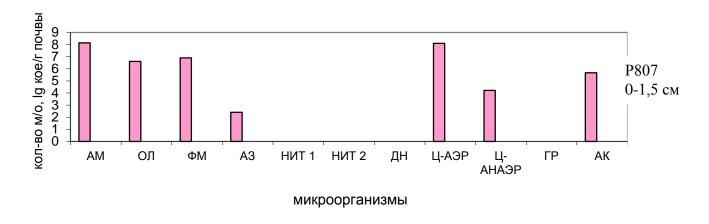


Рис. 5. Ландшафт разреза 806, разреза 807

Более активно, чем в предыдущих образцах почвы проходят микробиологические процессы в образце N_2 807 (0-1,5 см). Были обнаружены аммонифицирующие м/о (10^8 кое/г почвы), олигонитрофилы (10^6 кое/г почвы)) фосформобилизующие м/о (10^7 кое/г почвы) и незначительно азотфиксирующие анаэробные (10^2 кое/г почвы), целлюлозоразлагающие

аэробы $(10^8 \text{ кое/г почвы})$, анаэробы $(10^4 \text{ кое/г почвы})$ и актиномицеты $(10^5 \text{ кое/г почвы})$. С глубиной, в образце № 807 (10-32 см) отсутствовали фосформобилизующие м/о, а появились микроскопические грибы $(10^4 \text{ кое/г почвы})$. Таким образом, в этом образце почвы микробиологические процессы идут интенсивнее, чем в предыдущих образцах (рис. 6).

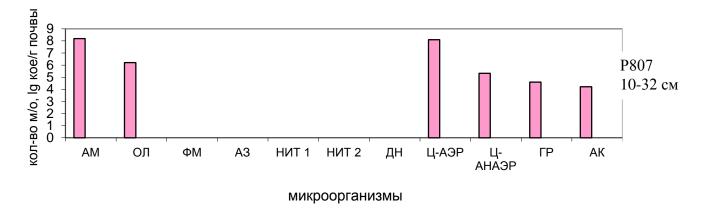


Рис. 6. Численность микробного сообщества в почвенных образцах № 807

В образце № 810 (0-5 см) не были обнаружены почти все полезные группы почвенных микроорганизмов, кроме целлюлозоразлагающих аэробных (10^8 кое/г почвы), анаэробных (10^6 кое/г почвы) и актиномицетов (10^3 кое/г почвы). В образце № 810 (0-5 см под деревом) были обнаружены в небольшом количестве аммонификаторы (10^7 кое/г почвы), олигонитрофилы (10^5 кое/г почвы), денитрификаторы (10^2 кое/г почвы), целлюлозоразлагающие аэробные (10^8 кое/г почвы) и анаэробные м/о (10^5 кое/г почвы). В этом образце проходили процессы разложения органических веществ, вероятнее всего лиственного опада (рис. 7, рис. 8).

Рис. 7. Ландшафт разреза 810

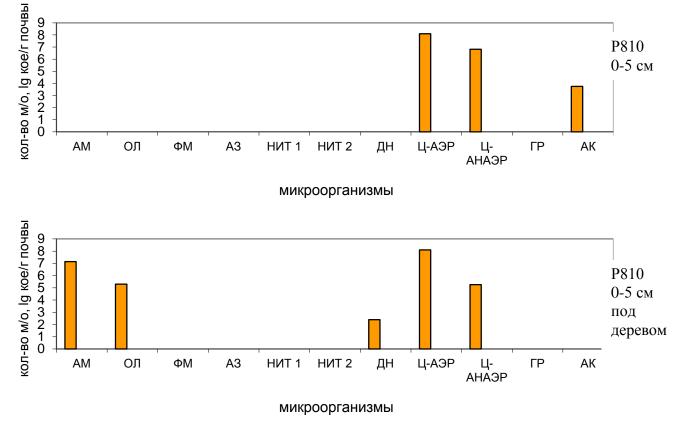


Рис. 8. Численность микробного сообщества в почвенных образцах № 810

Во всех образцах № 812 происходили процессы разложения азотсодержащих органических веществ, о которых свидетельствует наличие аммонификаторов и целлюлозоразлагающих микроорганизмов. Численность микроорганизмов во всех образцах № 812 была практически одинаковой, за исключением образца Р812 0-1,5 1,5-8 см (около дерева), где отсутствовали обнаружены олигонитрофилы были В небольшом количестве И денитрификаторы $(10^2 \text{ кое/г почвы})$. Во всех образцах был обнаружен анаэробный азотфиксатор р. Clostridium в небольшом количестве 10^2 кое/г почвы, за исключением образца Р812 1,5-8 см, где их число было на 2два порядка выше и составляло 10^4 кое/г почвы, что свидетельствует о происходящем масляно-кислом брожении в этом образце. Отсутствие грибов и актиномицетов (за исключением образца Р812 1,5-8 см) свидетельствует о том, что процессы деструкции сложных полимерных соединений в почве отсутствуют (рис. 9, 10).

Рис. 9. Ландшафт разреза 812

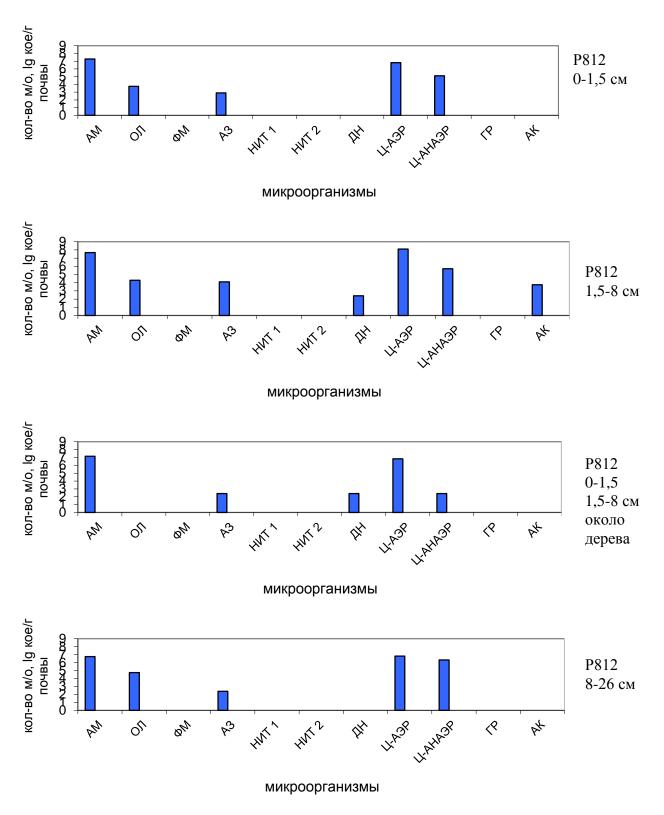


Рис. 10. Численность микробного сообщества в почвенных образцах № 812

Рис. 11. Ландшафт разреза 813

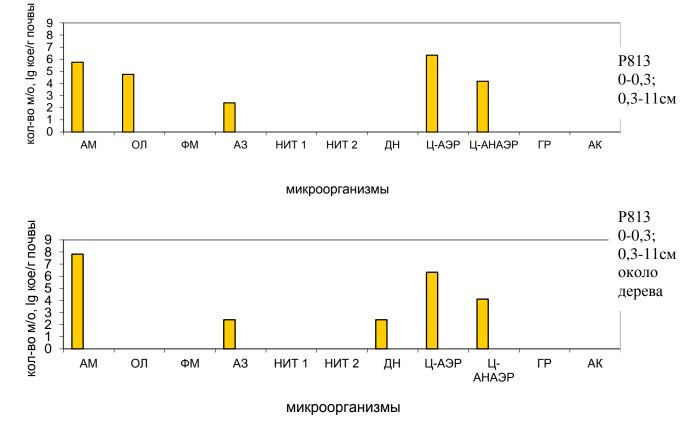


Рис. 12. Численность микробного сообщества в почвенных образцах № 813

Во всех образцах N 813 (рис. 11, 12) происходили процессы разложения азотсодержащих органических веществ, о которых свидетельствует наличие аммонификаторов и целлюлозоразлагающих микроорганизмов.

Численность аммонификаторов была на 2 порядка выше в образце № P813 0-0,3; 0,3-11см, отобранном около дерева и составляла 10^7 кое/г почвы по сравнению с количеством аммонификаторов в образце без дерева (10^5 кое/г почвы). Олигонитрофилы не обнаружены в образце около дерева, денитрификаторы обнаружены в количестве 10^2 кое/г почвы. Во всех образцах № 813 был обнаружен анаэробный азотфиксатор р. Clostridium в небольшом количестве 10^2 кое/г почвы, денитрификаторы обнаружен только в образце № P813 0-0,3;0,3-11см, отобранном около дерева и составляла 10^2 кое/г почвы.

Отсутствие грибов и актиномицетов свидетельствует о том, что процессы деструкции сложных полимерных соединений в почве отсутствуют (рис. 12).

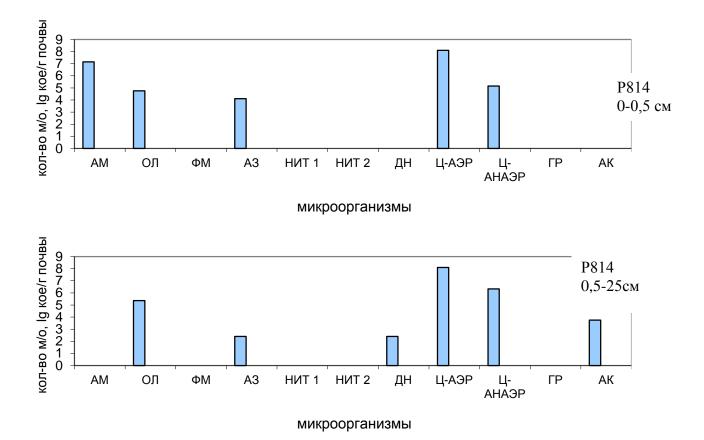


Рис. 13. Численность микробного сообщества в почвенных образцах № 814

Рис. 14. Ландшафт разреза 814

В образце Р 814 (0,5-25см) по сравнению с образцом № 814 (0-0,5 см) не были обнаружены аммонификаторы (рис. 13, рис. 14), но были обнаружены денитрификаторы, свидетельствующие о потерях азота из почвы в виде молекулярного азота и актиномицеты. Фосформобилизующие бактерии, нитрификаторы 1 и 2 фазы, и денитрификаторы не были обнаружены в образцах № 814, что свидетельствует о том, что в этих образцах не происходят процессы круговорота фосфора и азота, наличие олигонитрофилов свидетельствует о наличие круговорота углерода в почве.

В образце Р 815 (0-20 см) (рис. 15, 16) обнаружены денитрификаторы, что свидетельствует о потерях азота из почвы, присутствие грибов и актиномицетов свидетельствует о том, что в почве проходят процессы деструкции сложных полимерных соединений в отличие от образца Р815 (0-20 см около дерева). Фосформобилизующие бактерии, нитрификаторы 1 и 2 фазы не были обнаружены в образцах № 815, что свидетельствует о том, что в этих образцах не происходят процессы круговорота фосфора и азота, наличие олигонитрофилов свидетельствует о наличие круговорота углерода в почве.

Во всех образцах № 815 происходили процессы разложения азотсодержащих органических веществ, о которых свидетельствует наличие аммонификаторов и целлюлозоразлагающих микроорганизмов (рис. 15).

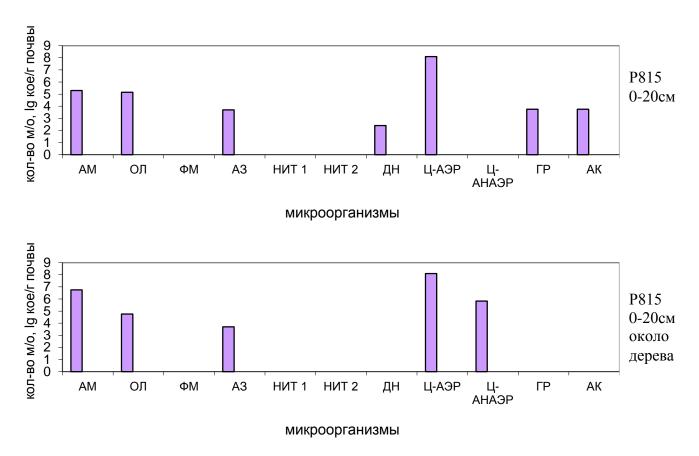
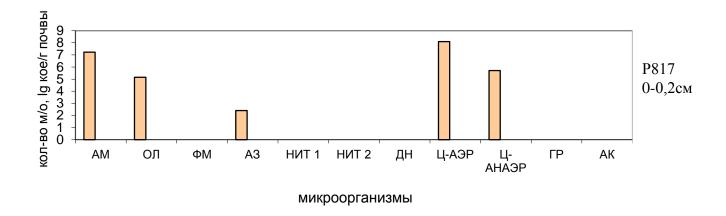



Рис. 15. Численность микробного сообщества в почвенных образцах № 815

Рис. 16. Ландшафт разреза 815

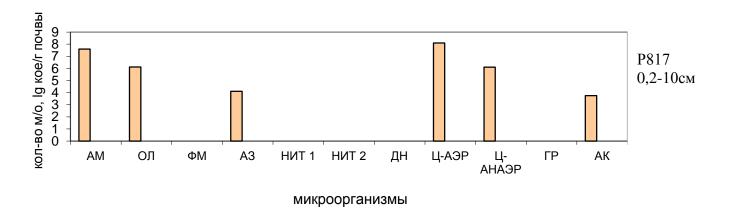


Рис. 17. Численность микробного сообщества в почвенных образцах № 817

Разрез 817 (рис. 17) был заложен на материковой части. По содержанию всех изученных групп микроорганизмов образцы почвы Р817 (0-0,2см) и Р817 (0,2-10 см) были схожи за исключением актиномицетов в образце Р817 (0,2-10 см). Фосформобилизующие бактерии, нитрификаторы 1 и 2 фазы не были обнаружены в образцах № 817, что свидетельствует о том, что в этих образцах не происходят процессы круговорота фосфора и азота, наличие олигонитрофилов свидетельствует о наличие круговорота углерода в почве.

Во всех образцах № 817 происходили процессы разложения азотсодержащих органических веществ, о которых свидетельствует наличие аммонификаторов и целлюлозоразлагающих микроорганизмов.

Данные агрохимического анализа 24 образцов представлены в таблицах 2-6 и рис. 18-21. Из данных табл. 2 и рис. 18 видно, что наиболее богаты по содержанию гумуса 1, 4, 6, 7, 8, 9 и 10 образцы, где содержание гумуса больше 1%, остальные почвы средние и бедные по обеспечению их гумусом.

Из данных табл. 3 и рис.19. видно, что высоко обеспеченными по подвижному аммиачному азоту являются образцы почв № 6, 7, 8, 10, 11, 13 и 14.

Наиболее обеспеченным подвижным фосфором является только 1 образец — \mathbb{N}_{2} 6, 9, 21, 23 образцы средне обеспечены подвижным фосфором, остальные низко обеспечены (табл.4, рис. 20).

Анализ почвенных образцов зоны Приаралья ПО содержанию образцов подвижного калия показал, что все почвы, кроме №№ 2, 3, 5, 19–21, 23, 24 высоко обеспечены подвижным калием (табл. 5, рис. 21).

Данные по содержанию растворимых ионов представлены в таблице 6.

 Таблица 2

 Содержание гумуса в образцах зоны Приаралья

№ образца	Гумус, %	Углерод гумуса, % (С _г , %)	Оценка обеспеченности
1). 801, 0-2см	1,40	0,81	богатые
2). Р801, 2-38см	0,82	0,48	бедные
3).Р801, 91-120см	0,63	0,37	бедные
4). Р804, с пов. под кустом	1,61	0,94	богатые
5). 805, с пов.	1,05	0,61	средние
6). Р806, 0-1,5см	1,42	0,83	богатые
7). Р806, 4-10см	1,55	0,90	богатые
8). P806, 10-32	1,09	0,63	средние
9). Р807, 0-1,5см	1,96	1,14	очень богатые
10). Р807, 10-32см	1,67	0,97	богатые
11). Р810,0-5см	0,80	0,47	бедные
12). Р810, 0-5см под деревом	0,70	0,41	бедные
13). Р812, 0-1,5см	0,98	0,57	средние
14). Р812, 1,5-8см	0,63	0,37	бедные
15). P812, 0-1,5; 1,5-8см около дерева	1,12	0,65	средние
16). Р812, 8-26см	0,96	0,56	средние
17). Р813,0-0,3; 0,3-11см	0,49	0,28	бедные
18). Р813, 0-0,3; 0,3-11см около дерева	0,84	0,49	бедные
19). Р814, 0-0,5см	0,38	0,22	очень бедные
20). Р814, 0,5-25см	0,35	0,20	очень бедные
21). Р815, 0-20см	0,67	0,39	бедные
22). Р815, 0-20см около дерева	1,12	0,65	средние
23). Р817, 0-0,2см	0,85	0,49	бедные
24).Р817,0,2-10см	0,59	0,34	бедные

Таблица 3 Содержание подвижного аммиачного азота в образцах зоны Приаралья

№ образца	Валовые формы азота, %	Подвижные, усвояемые растениями формы N-NH ₄ , мг/кг	Оценка обеспеченности
1). 801, 0-2см	0,043	22,4	низкая
2). Р801, 2-38см	0,035	14,3	очень низкая
3).Р801, 91-120см	0,027	11,4	очень низкая
4). Р804, с пов. под кустом	0,071	41,9	нормальная
5). 805, с пов.	0,053	32,5	нормальная
6). Р806, 0-1,5см	0,066	72,4	высокая
7). Р806, 4-10см	0,063	67,7	высокая
8). P806, 10-32	0,060	58,3	повышенная
9). Р807, 0-1,5см	0,056	27,4	низкая
10). Р807, 10-32см	0,047	55,3	повышенная
11). Р810,0-5см	0,044	53,7	повышенная
12). Р810, 0-5см под деревом	0,031	33,9	нормальная
13). Р812, 0-1,5см	0,054	66,0	высокая
14). Р812, 1,5-8см	0,029	61,3	высокая
15). Р812, 0-1,5; 1,5-8см около дерева	0,043	28,7	низкая
16). Р812, 8-26см	0,041	23,1	низкая
17). Р813,0-0,3; 0,3-11см	0,037	16,3	очень низкая
18). Р813, 0-0,3; 0,3-11см около дерева	0,046	20,5	низкая
19). Р814, 0-0,5см	0,040	44,7	нормальная
20). Р814, 0,5-25см	0,038	27,8	низкая
21). Р815, 0-20см	0,050	13,1	очень низкая
22). Р815, 0-20см около дерева	0,062	24,3	низкая
23). Р817, 0-0,2см	0,057	45,6	нормальная
24).Р817,0,2-10см	0,042	34,6	нормальная

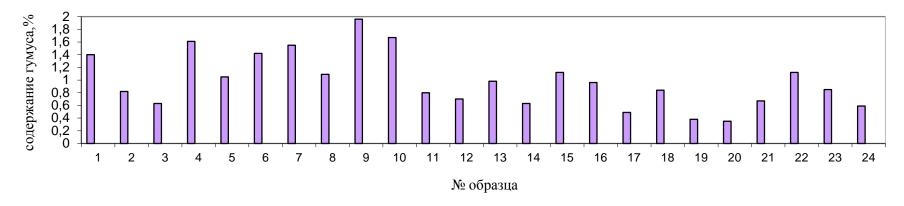


Рис. 18. Содержание гумуса в образцах зоны Приаралья

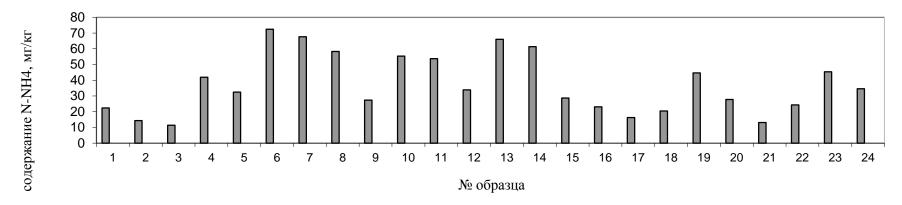


Рис. 19. Содержание подвижного аммиачного азота в образцах зоны Приаралья

Рис. 20. Содержание подвижного фосфора в образцах зоны Приаралья

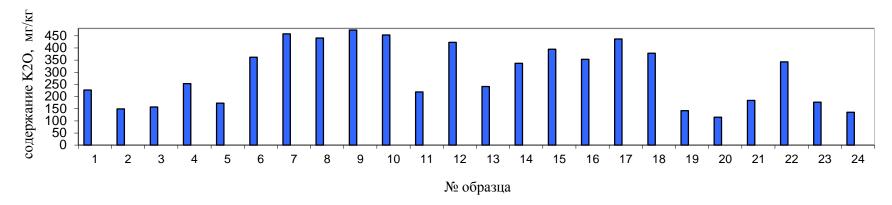


Рис. 21. Содержание подвижного калия в образцах зоны Приаралья

Таблица 4 Содержание подвижного фосфора в образцах зоны Приаралья

№ образца	Валовые формы фосфора, %	Подвижные, усвояемые растениями формы $P_2O_{5,M}$ г/кг	Оценка обеспеченности
1). 801, 0-2см	0,116	28,2	низкая
2). Р801, 2-38см	0,083	18,6	низкая
3).Р801, 91-120см	0,080	14,4	очень низкая
4). Р804, с пов. под кустом	0,138	12,2	очень низкая
5). 805, с пов.	0,127	11,0	очень низкая
6). Р806, 0-1,5см	0,224	48,5	высокая
7). Р806, 4-10см	0,182	27,2	низкая
8). P806, 10-32	0,160	16,2	низкая
9). Р807, 0-1,5см	0,239	34,7	средняя
10). Р807, 10-32см	0,193	21,8	низкая
11). Р810,0-5см	0,149	19,4	низкая
12). Р810, 0-5см под деревом	0,165	16,9	низкая
13). Р812, 0-1,5см	0,237	27,0	низкая
14). Р812, 1,5-8см	0,215	20,6	низкая
15). Р812, 0-1,5; 1,5-8см около дерева	0,176	18,0	низкая
16). Р812, 8-26см	0,209	19,6	низкая
17). Р813,0-0,3; 0,3-11см	0,154	14,8	очень низкая
18). Р813, 0-0,3; 0,3-11см около дерева	0,1741	17,0	низкая
19). Р814, 0-0,5см	0,151	13,4	очень низкая
20). Р814, 0,5-25см	0,099	12,6	очень низкая
21). Р815, 0-20см	0,157	33,4	средняя
22). Р815, 0-20см около дерева	0,187	29,2	низкая
23). Р817, 0-0,2см	0,212	31,4	средняя
24).Р817,0,2-10см	0,198	26,0	низкая

Таблица 5 Содержание подвижного калия в образцах зоны Приаралья

№ образца	Валовые формы калия, %	Подвижные, усвояемые растениями формы K_2O , мг/кг	Оценка обеспеченности
1). 801, 0-2см	0,228	227	средняя
2). Р801, 2-38см	0,205	149	низкая
3).Р801, 91-120см	0,200	157	низкая
4). Р804, с пов. под кустом	0,235	253	средняя
5). 805, с пов.	0,225	173	низкая
6). Р806, 0-1,5см	0,965	362	высокая
7). Р806, 4-10см	0,815	458	очень высокая
8). P806, 10-32	2,175	441	очень высокая
9). Р807, 0-1,5см	0,850	474	очень высокая
10). Р807, 10-32см	1,625	453	очень высокая
11). Р810,0-5см	0,427	219	средняя
12). Р810, 0-5см под деревом	0,247	423	очень высокая
13). Р812, 0-1,5см	0,330	241	средняя
14). Р812, 1,5-8см	0,750	337	высокая
15). Р812, 0-1,5; 1,5-8см около дерева	0,325	395	высокая
16). Р812, 8-26см	0,280	353	высокая
17). Р813,0-0,3; 0,3-11см	0,250	437	очень высокая
18). Р813, 0-0,3; 0,3-11см около дерева	0,310	378	высокая
19). Р814, 0-0,5см	0,222	142	низкая
20). Р814, 0,5-25см	0,201	115	низкая
21). Р815, 0-20см	0,245	184	низкая
22). Р815, 0-20см около дерева	0,353	343	высокая
23). Р817, 0-0,2см	0,338	177	низкая
24).Р817,0,2-10см	0,265	135	низкая

Таблица 6

Содержание растворимых ионов, %

№ образ- ца	EC 1:1, dS/m	ECe, dS/m	Плот- ный остаток, %	НСО3	Cl	SO ₄	Ca	Mg	Na	K	Сумма ионов, %	
1	0,18	0,36	0,087	следы	0,015		следы					
2	0,09	0,32	0,091	следы	0,015		следы					
3	0,14	0,49	0,066	следы	0,010		следы					
4	0,34	1,19	1,009	0,009	0,030	0,612	0,200	0,012	0,040	0,040	0,943	
5	1,92	6,72	1,202	0,012	0,110	0,749	0,275	0,018	0,075	0,021	1,260	
6	0,86	3,01	0,300	0,012	0,020	0,1479	0,040	0,006	0,034	0,016	0,307	
7	1,21	4,24	0,800	0,012	0,015	0,545	0,190	0,009	0,021	0,033	0,825	
8			1,090	0,009	0,040	0,746	0,225	0,027	0,026	0,051	1,124	
9	2,60	9,10	0,690	0,012	0,020	0,444	0,080	0,021	0,3074	0,043	0,694	
10	1,99	6,97	0,665	0,012	0,015	0,421	0,085	0,021	0,052	0,047	0,653	
11	0,66	2,31	0,537	0,009	0,015	0,345	0,080	0,033	0,020	0,015	0,517	
12	14,82	51,87	2,290	0,015	0,800	0,637	0,230	0,039	0,460	0,054	2,235	
13	1,13	3,96	0,473	0,012	0,025	0,288	0,085	0,012	0,0252	0,022	0,466	
14	1,79	6,27	0,650	0,012	0,060	0,387	0,080	0,024	0,073	0,030	0,666	
15	4,32	15,12	1,100	0,012	0,190	0,512	0,130	0,042	0,1149	0,045	1,050	
16	10,75	37,63	1,577	0,012	0,510	0,525	0,175	0,027	0,310	0,032	1,591	
17			3,685	0,015	1,5815	0,715	0,265	0,066	0,868	0,054	3,498	
18	3,84	13,44	0,907	0,012	0,255	0,356	0,065	0,036	0,133	0,033	0,914	
19	1,38	4,83	0,827	0,012	0,205	0,355	0,105	0,036	0,105	0,030	0,848	
20	1,04	3,64	0,282	0,009	0,015	0,168	0,045	0,018	0,007	0,008	0,270	
21	0,41	1,44	0,125	следы	0,020			0,007				

№ образ- ца	EC 1:1, dS/m	ECe, dS/m	Плот- ный остаток, %	НСО3	Cl	SO ₄	Ca	Mg	Na	K	Сумма ионов, %
22	0,79	2,77	0,425	0,009	0,020	0,272	0,055	0,015	0,047	0,016	0,434
23	0,46	1,614	0,092	следы	0,015	следы					
24	0,27	0,95	0,070	следы	0,015			следы			

Продолжение таблицы 6

Содержание растворимых ионов, в мг/экв

№ образца	HCO ₃	Cl	SO ₄	Сумма анионов	Ca	Mg	Na	К	Сумма кати-онов		
1	следы	0,423	следы								
2	следы	0,4723	следы			следы					
3	следы	0,282	следы			следы					
4	0,148	0,846	12,730	13,723	10,000	0,986	1,740	1,000	13,726		
5	0,197	3,102	15,579	18,878	13,750	1,480	3,236	0,525	19,017		
6	0,197	0,564	3,723	4,484	2,000	0,493	1,479	0,400	4,372		
7	0,197	0,423	11,336	11,956	9,500	0,740	0,914	0,825	11,978		
8	0,148	1,128	15,517	16,792	11,250	2,219	1,131	1,275	15,875		
9	0,197	0,564	9,235	9,3996	4,000	1,726	3,219	1,075	10,020		
10	0,197	0,423	8,757	9,377	4,250	1,726	2,262	1,175	9,413		
11	0,148	0,423	7,1476	7,747	4,000	2,713	0,870	0,375	7,958		
12	0,246	22,560	13,250	36,056	11,500	3,206	20,010	1,350	36,066		
13	0,197	0,705	5,990	6,892	4,250	0,986	0,957	0,550	6,743		
14	0,197	1,692	8,050	9,938	4,000	1,9736	3,176	0,750	9,898		

№ образца	HCO ₃	Cl	SO ₄	Сумма анионов	Ca	Mg	Na	K	Сумма кати-онов
15	0,197	5,358	10,650	16,204	6,500	3,452	5,177	1,125	16,254
16	0,197	14,382	10,920	25,499	8,750	2,219	13,485	0,800	25,254
17	0,246	42,723	14,872	57,841	13,250	5,425	37,758	1,350	57,783
18	0,197	7,1914	7,405	14,793	3,250	4,932	5,786	0,825	14,793
19	0,197	5,781	7,384	13,362	2,250	2,959	4,568	0,750	13,527
20	0,148	0,423	3,494	4,065	2,250	1,480	0,305	0,200	4,234
21	следы	0,564	следы			след	Ы		
22	0,148	0,564	5,658	6,369	2,750	1,233	2,045	0,400	6,428
23	следы	0,423	следы						
24	следы	0,423	следы			след	Ы		

Продолжение таблицы 6

№ образца	Na/Cl	Оценка химизма засоле- ния	SO ₄ т, мг/экв	SO ₄ T,	Сумма токсичных солей,%	Содержание, %		
						Карбонаты, СО ₂	Гипс, CaSO ₄ x 2H ₂ O	рН
1						3,34	0,72	7,3
2						0,60	0,41	7,6
3						0,90	0,29	7,4
4	2,06	X-C	2,88	0,14	0,26	4,70	19,91	7,5
5	1,05	X	2,03	0,10	0,32	2,50	73,88	7,2
6	2,62	X-C	1,92	0,09	0,17	5,8	0,85	7,3
7	2,16	X-C	2,03	0,10	0,18	4,50	10,38	7,7
8	1,00	X	4,41	0,21	0,36	2,60	5,85	7,5

№ образца	Na/Cl	Оценка химизма засоле- ния	SO ₄ т, мг/экв	SO ₄ т, %	Сумма токсичных солей,%	Содержание, %		
						Карбонаты, СО ₂	Гипс, CaSO ₄ x 2H ₂ O	pН
9	5,71	X-C	5,743	0,26	0,42	5,30	2,88	7,8
10	5,35	X-C	4,70	0,23	0,36	4,40	0,72	7,4
11	2,06	X-C	3,32	0,16	0,24	8,60	8,01	7,4
12	0,89	X	2,00	0,10	0,45	1,70	8,07	7,5
13	1,36	X	1,94	0,09	0,17	8,60	1,07	7,6
14	1,88	C-X	4,25	0,20	0,39	8,30	2,31	7,2
15	0,97	C-X	4,35	0,21	0,60	6,30	8,45	7,5
16	0,94	X	2,37	0,11	0,99	7,90	4,57	7,0
17	0,88	X	1,87	0,09	2,59	5,10	4,57	7,0
18	0,80	X	4,35	0,21	0,69	4,40	3,12	7,3
19	0,79	X	2,33	0,11	0,49	4,40	6,22	7,1
20	0,72	X	1,39	0,07	0,11	1,00	1,34	7,4
21						3,50	2,59	7,3
22	3,693	X-C	3,06	0,15	0,24	5,40	3,46	7,2
23						3,00	0,27	7,3
24						3,50	0,13	7,0

Заключение

Зарождение жизни в толще обсохшего дна происходит задолго до появления внешних признаков. Уловить этот процесс возможно только изучением микробиологического состава грунтов, чтобы ответить на вопросы — в какой момент после высыхания моря донные озерные отложения приобретают статус почвы? С какого времени правомерно отнести покрытие дна к почвам? — а также оценить значимость посадок растительности или самозарастания в формировании почвенного покрова.

Верстка: Беглов И.

Подготовлено к печати в Научно-информационном центре МКВК

Республика Узбекистан, 100 187, г. Ташкент, м-в Карасу-4, д. 11A

sic.icwc-aral.uz