ИСПОЛЬЗОВАНИЕ ГИС ПРИ ВЫБОРЕ МЕСТА СТРОИТЕЛЬСТВА МИКРО- И МАЛЫХ ГИДРОЭЛЕКТРОСТАНЦИЙ

Т.К.УРМАМБЕТОВА

E.mail. ksucta@elcat.kg

Геоинформациалык технологияларды гидроэлектростанцияларын курууда пайдалануу ишчаралары төмөнкү макалада берилген.

В статье описано использование геоинформационных технологий в строительстве гидроэлектростанций.

This article is about the using of geoinformation technologies in the construction of a hydroelectric power station.

Изучение природных условий в целях их рационального использования предполагает анализ большого объема разносторонней, в том числе картографической информации с применением современных информационных технологий. Для раскрытия особенностей развития геосистем как во временном, так и в пространственном отношениях в условиях сложного строения ландшафтов, особенно горных территорий, в последние десятилетия учеными разработаны специальные программы. Примером этого являются геоинформационные технологии. Применение геоинформационных технологий (ГИС) упрощает вычисление количественных характеристик речных систем – протяженности рек и их порядков, среднегодового расхода воды и потенциальной энергетической мощности водотоков.

Успехи внедрения ГИС и геоинформационных методов в практику географических исследований связаны с развитием геоинформатики как науки, бурным развитием автоматизации в картографии и математико-картографического моделирования геосистем. Одна из составляющих этого научного направления — моделирование рельефа, его картографическая визуализация и анализ на основе созданных моделей.

В настоящее время с помощью ГИС выполняются комплексные системные исследования в различных областях, в том числе для прогнозирования состояния водных объектов.

Кыргызстан — единственная страна Центральной Азии, водные ресурсы которой полностью формируются на собственной территории, в этом ее гидрологическая особенность и преимущество. Горные бурные реки имеют огромный потенциал энергоресурсов, рациональное использование которых позволит преодолеть республике энергетический кризис.

Для использования ГИС-технологий в гидроэнергетике в первую очередь нам необходимо создать базу данных исследуемого объекта. Геоинформационная система (ГИС) – это программно-аппаратный комплекс, решающий совокупность задач по хранению, отображению, обновлению и анализу пространственной и атрибутивной информации по объектам территории. Одна из основных функций ГИС – создание и использование компьютерных (электронных) карт, атласов и других картографических произведений. Основой любой информационной системы служат данные. Данные в ГИС подразделяются на пространственные, семантические и метаданные. Назначение географической информационной системы (ГИС) состоит в предоставлении пространственной основы поддержки принятия решений в задачах использования ресурсов Земли и для управления средой, созданной человеком.

Обычно ГИС представляет информацию в виде карт и с помощью символов. Глядя на карту, вы узнаете, где находятся те или иные объекты и процессы, чем они являются, как до них можно добраться: по автодорогам или другим транспортом, что граничит с ними или находится поблизости. При интерактивной работе с картами

на персональном компьютере ГИС может также создавать новую информацию, которая не присутствует в явном виде на бумажных картах.

Например, вы можете запросить все известные атрибуты (характеристики) пространственного объекта; получить список всех объектов, встречающихся на маршруте из одной точки сети до другой; вычислить время в пути; выполнить моделирование, позволяющее определить сток воды или распространение загрязнителей.

Картографическая основа объединяет цифровые топографические карты и планы области, муниципальных образований, населенных пунктов. На цифровые топографические карты можно нанести тематические слои, отражающие состояние объектов и статистическую информацию гидрологического назначения:

- гидрометеорологические условия района;
- основные характеристики и параметры гидрографической сети на территории района;
- данные о наличии, состоянии и владельцах гидротехнических сооружений на территории района;
 - водный режим:
 - мониторинг ледовых заторов.

Созданная ГИС гидрологического значения обеспечивает:

- сбор и накопление информации о местности в виде цифровых топографических карт и планов и ее визуализацию;
- создание, привязку и совместное использование цифровых карт и различной тематической пользовательской информации;
- поиск любой атрибутивной информации по табличным и картографическим запросам, пространственную визуализацию любых данных;
- автоматический ввод и редактирование параметров, необходимых для проведения моделирования: корректирование данных оператором; выбор необходимой информации из БД паводковых ситуаций; просмотр, редактирование и использование накопленных сценариев;
- разработку и выполнение ГИС-приложений, решающих широкий круг задач: от анализа и оценки местности до моделирования процессов;
 - формирование отчетных документов.

Одним из лидеров программного обеспечения ГИС является ArcGIS. Если речь идет о создании и управлении географическими данными, то продукты ArcGIS обеспечивают полный набор необходимых инструментов. ArcGIS представляет собой масштабируемый набор программных продуктов для создания, управления, интеграции, анализа и представления географических данных. Оставаясь практичными системами, включающими наиболее распространенные функции в пределах возможностей неопытных пользователей, программы ArcGIS обеспечивают также и сложную функциональность, и возможность настройки более опытными пользователями.

Для примера был исследован бассейн реки Чу. Река Чу образуется при слиянии рек Джоонарык и Кочкор, берущих начало из ледников в хребтах Терскей Ала-Тоо и Киргизский Ала-Тоо. Ниже их слияния в горном ущелье на реке Чу построено Ортотокойское водохранилище. Затем река прорывается в Иссык-Кульскую котловину. Через Боомское ущелье река выходит в Чуйскую долину, где с окружающих гор стекают многочисленные притоки. Но далее из реки по многим каналам, самый известный — киргизский БЧК — Большой Чуйский Канал, на орошение полей забирается более половины стока. Большей частью течение Чу является границей между Киргизией и Казахстаном, затем уходит в казахские степи. На автотрассе Бишкек — Алма-Ата на мосту через реку — таможенный пост Курдай. В низовьях пересекает пустыню Муюнкум и теряется во впадине Ащиколь.

Гидроэнергетическая характеристика реки Чу

Таблица 1.

Река, участок реки	Длина	Норма	Суммарное	Гидроэнергопоненциал рек		
	учтенных	стока,	падение	мощность,	мощность	энергия,

	участков,	м ³ /с	участков, м	тыс. кВт	удел., тыс.	МЛН
	KM				кВт на 1 км	кВт∙ч в
						год
Джуан-Арык	21	11,3	297	29,9	1,42	262
Кочкор	36	11,6	369	42	1,17	368
Коморчок	23	2,24	1820	20	0,87	175
Чон-Кемин	111	22,2	2311	252	2,27	2208
Кичи-Кемин	35	2,56	2330	31,7	0,91	278
Киртавулга	19	1,03	1140	5,85	0,31	51
Кызыл-Су	27	2,47	2031	24,7	0,91	216
Шамси	51	5,06	2784	38,8	0,76	340
Кегети	29	2,41	2150	25,5	0,88	223
Нооруз	20	2,47	1500	18,2	0,91	159
Аламедин	32	6,46	2175	129	4,03	1130
Ала-Арча	22	4,49	1622	69,2	3,15	606
Джеламыш	23	1,45	2210	15,8	0,69	138
Сокулук	26,5	5,31	2113	55,1	2,08	483
Ак-Су	50	4,79	3604	84,9	1,7	744
Кара-Балта	53	5,24	3697	95	1,79	832
Чон-Каинды	15	1,92	2270	21,4	1,43	187
Джарды-Каинды	26	3,21	2700	42,6	1,64	373
Аспара	40	5,59	2720	74,4	1,86	652

Длина 1067 км, площадь бассейна 62500 км².

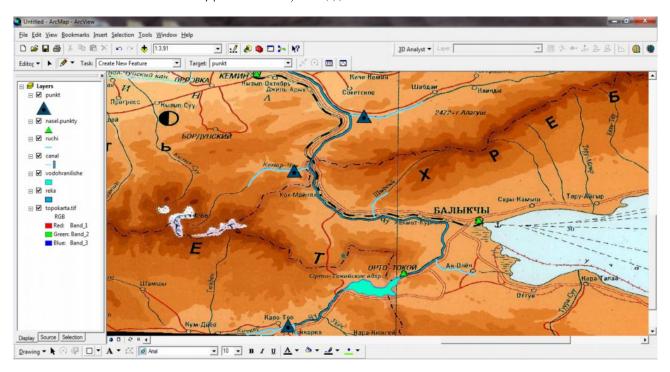
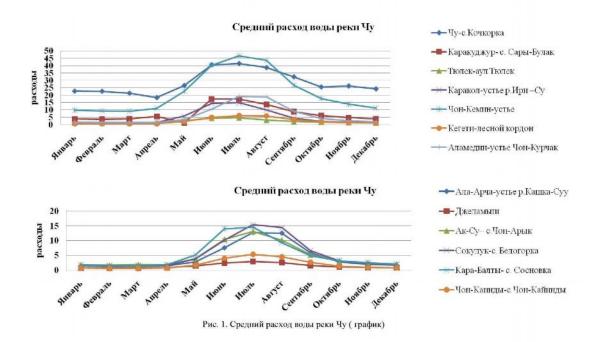


Рис. 2. Местности для проектирования микро- и малых ГЭС

Исходя из вышеуказанных показателей характеристики бассейнов реки Чу строительство микро- и малых ГЭС деривационного типа приемлемо на притоках (см. табл. 1 и рис. 1). Подходящие местности для строительства деривационного ГЭС показаны на рис. 2.

Эффективным инструментом анализа гидропотенциала представляются геопространственные базы данных, включающие сведения о его величине и

значениях определяющих факторов. Графические модели, созданные методами и средствами геодезии и ГИС-технологий, позволяют оценить особенности природного гидропотенциала, определить участки, перспективные для его хозяйственного освоения. Степень освоенности гидропотенцила обеспечивается включением в модель слоев с информацией о хозяйственных объектах.


Исследования показали, что строительство плотинного типа ГЭС экономически и технически невыгодно, так как река протекает вдали населенных пунктов, регион является равнинным. Для строительства ГЭС плотинного типа нужен напор для работы турбин и генераторов, что обеспечивается со строительством высоких дамб. Мощность гидрогенераторов определяется произведением двух величин – количеством воды и напором воды, т.е. напор определяет частоту вращения, расход воды определяет мощность, в результате генератор выдает энергию.

В Ортотокойском водохранилище уровень воды 50 метров держится 1-2 недели. Зимой, начиная с октября месяца, воду задерживают, накапливают и в мае открывают для орошения земель Чуйской долины. Строительство ГЭС плотинного типа в Ортотокойском водохранилище является экономически невыгодным, с мая месяца уровень воды падает, нет напора, т.е. одна из величин равна 0, в лучшем случае электростанция может работать максимум 2-3 недели.

Деривационный способ постройки ГЭС целесообразен для горной местности и является приоритетным, более выгодным с учетом всех особенностей. Строительство микро- и малых ГЭС деривационного типа возможно на притоках реки Чу.

Притоки реки Чу имеют большой валовый гидроэнергетический потенциал, который можно использовать для электроснабжения населенных пунктов Иссык-Кульской и Чуйской областей. Анализируя исследуемую территорию, были выведены три участка притоков реки ЧУ, где можно проектировать микро - или малые ГЭС.

В дальнейшем для строительства ГЭС на этих территориях предстоит детально исследовать участки с использованием методов и средств геодезии, дистанционного зондирования и ГИС для рационального использования природных ресурсов и финансово-экономических средств.

Список литературы

- 1. Бут Б., Кросер С., Кларк Ж., Макдональд Э. Построение баз геоданных: ESRI. USA: DATA+, Ltd, 1999-2000. C.5-7.
- 2. Маматканов Д.М., Бажанова Л.В., Романовский В.В. Водные ресурсы Кыргызстана на современном этапе. Бишкек: Илим, 2006. С. 7.
- 3. Яковлев С.В., Губий И.Г., Павлинова И.И. Комплексное использование водных ресурсов. М.: Высшая школа, 2008. С. 87.
- 4. Липкин В.И., Богомбаев Э.С. Микро- и малые гидроэлектростанции в Кыргызской Республике: Справочное пособие. Бишкек, 2010.
- 5. Влацкий В.В. Моделирование речного стока с использованием ГИСтехнологий // Вестник Оренбургского государственного университета. N_2 9 (115)/сентябрь 2010.
 - 6. www.caresd.net
 - 7. http://energo.gov.kg
 - 8. http://www.pr.kg/news/kg