Карамолдоев Ж.Ж., Калашникова О.Ю. (ЦАИИЗ, г.Бишкек)

ПРОГНОЗ ПРИТОКА ВОДЫ В ТОКТОГУЛЬСКОЕ ВОДОХРАНИЛИЩЕ НА ВЕГЕТАЦИОННЫЙ ПЕРИОД

Рассматриваемая территория в физико-географическом отношении принадлежит к Среднеазиатской горной стране, Внутренне-Тянь-Шанской провинции. Это обширный горно-котловинный регион замкнутого характера. Средняя абсолютная высота составляет 3100 м. Около 92% ее территории лежит в бассейне реки Нарын. Общими для территории является широтное или близкое к нему простирание горных хребтов с межгорными котловинами и долинами.

Климат резко континентальный, засушливый. В течение года более продолжителен холодный период. Перечисленные общие черты влияют на характер формирования и географического распределения стока рек Нарынского бассейна, который является ресурсообразующим регионом как для поверхностных, так и для подземных вод. В бассейне реки Нарын находятся многочисленные водопотребители, главным из которых является Токтогульская ГЭС, для которой прогноз притока воды в водохранилище является основным условием для разработки режима работы каскада водохранилищ.

Река Нарын принадлежит к бассейну Аральского моря, являясь крупнейшим притоком реки Сырдарья. Водосборная площадь бассейна реки Нарын составляет около 58 000 км², высотные отметки водосборного бассейна изменяются в пределах 0,7 – 5,0 км.

В таблице 1 приведены основные физико-географические и гидрологические характеристики реки Нарын в створе Учтерек (входящего основного створа) и трех боковых притоков Токтогульского водохранилища.

Таблица 1 Основные физико-географические и гидрологические характеристики реки Нарын и боковых притоков в Токтогульское водохранилище

Река- створ	Длина реки от истока до устья (км)	Площадь водосбора км ²	Средне- взвешен. высота водосбора, м	Период наблюдений за стоком, годы	Норма стока м ³ /с	Тип пита- ния реки
Нарын- Учтерек	578	52 000	2 890	1963-2011	324	снегово- ледниковый
Узунакмат- устье р.Уста Сай	73	1 790	2 360	1930-2010	28,7	снегово- ледниковый
Чычкан –устье р.Бала Чычкан	61	903	2 890	1938-2009	17,5	снегово- ледниковый
Торкент- кишл.Торкент	45	654	2 420	1966-1997	10,3	снегово- ледниковый

Для прогноза на вегетационный период (апрель-сентябрь) притока воды в Токтогульское водохранилище использовалась метеорологическая информация с 7-и метеостанций и метеопостов за период с 1967 по 2011гг., находящихся на различных высотах и экспозициях склонов в бассейнах основных притоков реки Нарын. Сведения о них приведены в таблице 2.

Таблица 2 Сведения о метеостанциях (метеопостах) бассейна реки Нарын

№ п/п	Название метеостанции	Бассейн реки	Высота,м.н.у.м.
1.	Тянь Шань	верховья р.Большой Нарын	3614
2.	Нарын	верховья р.Нарын	2039
3.	Атбашы	р.Ат Башы	2025
4.	Баетово	р.Терек	1960
5.	Итагар	р.Чычкан	2011
6.	Суусамыр	р.Суусамыр	2061
7.	Чаек	р.Джумгал	1642

На рис.1 представлен годовой ход осадков по этим метеостанциям и метеопостам.

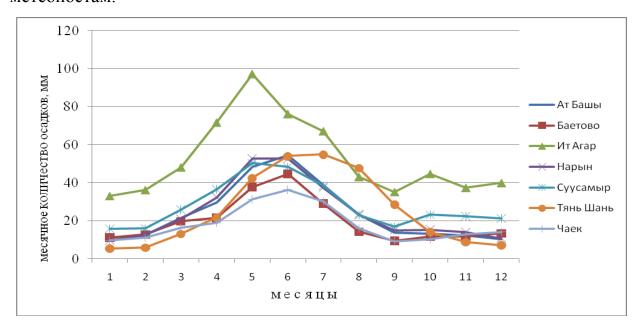


Рис.1. Годовой ход осадков по многолетним данным.

Как видно из рис 1, графики годового хода осадков во многом аналогичны друг другу. Максимум выпадения осадков приходится на май-июнь, на высокогорной метеостанции Тянь Шань — на июнь-август. Минимумы выпадения осадков отмечаются в течение холодного периода - с сентября по февраль, на метеостанции Тянь Шань — с октября по февраль.

Следует также отметить то, что в силу орографии и ориентированности к влагонесущим потокам на метеостанции Итагар, осадков выпадает больше, чем на остальных метеостанциях.

Внутригодовое распределение стока в первую очередь зависит от изменения в течение года осадков и температуры воздуха, а следовательно, и испарения. Внутригодовое распределение стока реки Нарын – в створе Учтерек, притока воды в Токтогульское водохранилище и боковой приточности в Токтогульское водохранилище – рек Чычкан, Узунакмат и Торкент приведено на рис.2 и 3. Приток воды в Токтогульское водохранилище рассчитывался как сумма основного входящего створа в водохранилище – створ Учтерек и трех боковых притоков в водохранилище:

Узунакмат, Чычкан и Торкент. Начиная с 1993г., когда селевым паводком был разрушен гидропост Торкент, при расчете использовался 0,6*Чычкан.

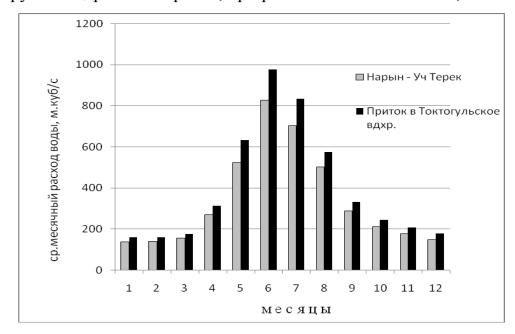


Рис.2. Внутригодовое распределение стока реки Нарын – створ Учтерек и притока воды в Токтогульское водохранилище.

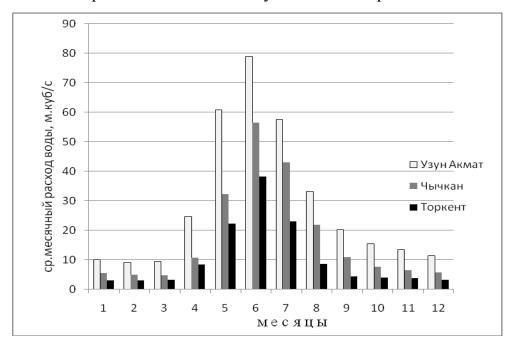


Рис.3. Внутригодовое распределение стока рек — боковых притоков в Токтогульское водохранилище.

Как видно из рис.2 и 3 все реки — боковой приточности имеют максимум своих расходов в период с мая по июнь, на реке Нарын—створ Учтерек — по август. Наибольшие значения расходов воды отмечаются на всех реках в июне. Максимальные расходы для реки Нарын - створ Учтерек

достигают 2 400 м 3 /с (в 1966г.), на реке Чычкан – 141 м 3 /с (в 2002г.), на реке Узунакмат – 203 м 3 /с (в 1934г.), на реке Торкент – 177 м 3 /с (в 1968г.). Меженный период для всех рек можно определить с октября (по боковым притокам в Токтогульское вдхр.), с ноября (по створу Учтерек) по март.

Также необходимо отметить, что в течение всего года среднемесячные расходы на реке Нарын — створ Учтерек значительно превышают аналогичные расходы на остальных реках, что объясняется тем, что площадь водосбора реки Нарын гораздо больше, чем у других изучаемых рек.

Основным источником питания анализируемых рек являются талые воды и в первую очередь талые воды сезонных снегов. В питании значительной части рек с высокогорными водосборами существенную роль играют талые воды "вечных" снегов и ледников. Дождевые воды в общем питании речного стока имеют достаточно небольшое значение. В питании так называемого "базисного стока" и меженного стока значительное участие принимают подземные воды. Соотношение отдельных источников питания в общем стоке рек изменяется в широких пределах в зависимости от особенностей формирования стока, которые определяются главным образом вертикальной поясностью и гипсометрическими характеристиками бассейнов рек меньшей степени ИХ географическим положением. Ha И В максимальный сток отмечается в июне (для рек рассматриваемых реках снегово-ледникового питания). Поэтому в выборе метода прогноза в первую очередь руководствуются именно этим факторами.

Основным источником накопления влаги являются осадки в виде снега или дождя. Запасы воды, накопленные в виде снега, как правило, связаны с продолжительностью снегонакопления, то есть с продолжительностью холодного периода.

В практике гидрологического прогнозирования широкое распространение получили физико-статистические методы /5/. Общей теоретической основой для разработки долгосрочных прогнозов стока рек является уравнение водного баланса речного бассейна /8/. Но, к моменту

выпуска прогноза, многие члены уравнения измерить или получить путем расчета невозможно. Поэтому при разработке практических методов прогноза сезонного стока уравнение водного баланса заменяют другим приближенным уравнением, в которое входят только основные факторы /4 /.

В отличие от многих авторов /2,10/ считающих, что только твердые осадки формируют весенне-летний сток, Гирник установила, что не обязательно устанавливать для каждого бассейна и каждого года свои сроки начала и окончания суммирования осадков, выпадающих в твердом виде. Она считает, что в качестве предиктора для составления прогноза на вегетацию достаточно брать календарный период с 1 октября по 31 марта.

Кроме вклада в сток осадков в жидком эквиваленте (в мм), в множественной регрессии был учтен меженный (базисный), что значительно улучшило тесноту корреляционной зависимости с притоком воды в Токтогульское водохранилище на вегетационный период (апрель-сентябрь).

Был физико-статистическими произведен анализ методами прогнозирования водности рек, при этом предполагалось, что на сток рек в вегетационный период влияют не только осадки, выпавшие за холодный меженный сток. Для период, НО И ЭТОГО составлялись линейные корреляционные зависимости и рассчитывались уравнения связи средней суммы осадков за холодный период в модульных коэффициентах (рис.4) по 7-и метеостанциям, находящимся в бассейне реки Нарын с притоком воды в Тотогульское вдхр. за вегетационный период. Был применен также метод множественной регрессии, в которой в качестве второго предиктора использовался меженный сток притока воды в Токтогульское вдхр.(рис 5).

В результате работы были получены следующие уравнения для расчета притока воды в Токтогульское водохранилище на вегетационный период:

- 1. Q ср.вег.= $385,7*\Sigma$ к υ (Тянь Шань + Нарын + Итагар + Суусамыр + Баетово+Ат Башы+Чаек)/7 + 212,4 $R^2 = 0,66$.
- 2. Q ср.вег.= 1,44*Q межень + $362*\Sigma$ к υ (Тянь Шань + Нарын + Итагар + Суусамыр + Баетово+Ат Башы+Чаек)/7 26,1 R² = 0,75.

Где Q ср.вег. – средний вегетационный расход воды, m^3/c ; $\Sigma \kappa \upsilon$ – сумма осадков в модульных коэффициентах; Q межень – средний расход воды за меженный период, m^3/c R^2 - коэффициент регрессии.

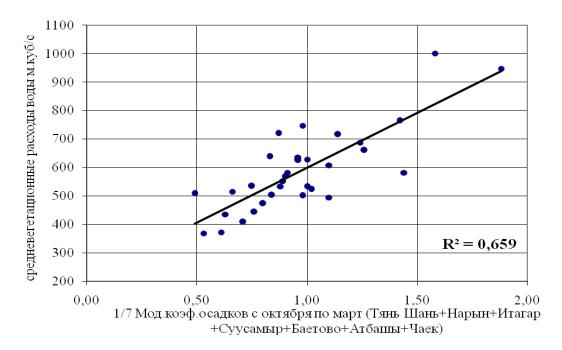


Рис.4. График связи притока воды в Токтогульского вдхр. за вегетационный период со средней суммой осадков бассейна р.Нарын.

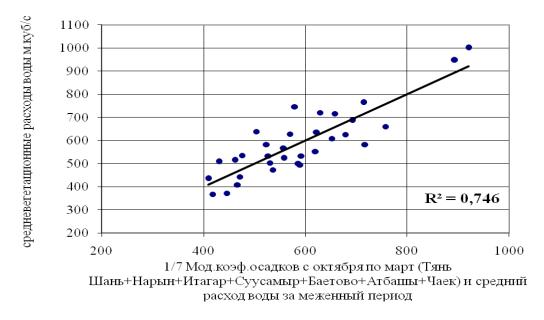


Рис.5. График связи притока воды в Токтогульского вдхр. за вегетационный период со средней суммой осадков бассейна р.Нарын и средним расходом воды за меженный период.

Литература

- 1. Абальян Т.С. Методика прогноза объема стока за вегетационный период рек Северной Киргизии на участках с естественным режимом Научный отчет. Главное Управление Гидрометеорологической Службы при Совете Министров СССР. Центральный институт прогнозов. М., 1956г.
- 2. Аполлов Б.А., Калинин Г.П., Комаров В.Д. Курс гидрологических прогнозов. Л., Гидрометеоиздат, 1974.
- 3. Атлас Киргизской ССР. ГУГК. М., 1987.
- 4. Гирник Е.И. Долгосрочные прогнозы стока по рекам бассейна Сырдарьи в условиях искусственно измененного их режима. Главное Управление Гидрометеорологической Службы при Совете Министров СССР. САРНИГМИ. Ташкент, 1971г.
- 5. Калашникова О.Ю. К вопросу о гидрологических прогнозах весеннеелетнего стока горных рек. «Метеорология и гидрология в Кыргызстане». КРСУ. Выпуск 3, Бишкек, 2003г.
- 6. Мартинек Дж., РангоА., Робертц Р. Модель Талого Стока. Руководство для пользователей. Географический факультет. Бернский Университет, 1998г.
- 7. Михайлов В.И., Петряшова Е.В., Смородская Н.С. К методике долгосрочных прогнозов стока горных рек Киргизии. // Особенности и методика расчета гидрометеорологических элементов Киргизии и их прогноз / Известия Киргизского географического общества, вып.15. Фрунзе: Илим, 1983.
- 8. Руководство по гидрометеорологическим прогнозам, выпуск 1.Л.:Гидрометеоиздат,1989г.
- 9. Ресурсы поверхностных вод СССР. Том 14. Средняя Азия, выпуск 2. Л.:Гидрометеоиздат,1973г.
- 10. Статистические методы прогноза стока горных рек. Труды САРНИГМИ. Л.: Гидрометеоиздат, 1977 г.