

ФОРМЫ МИГРАЦИИ ТОКСИЧНЫХ ЭЛЕМЕНТОВ В ВОДЕ Р. СУРХАНДАРЬИ

Тиллаев Холмат Рахмонович

преподаватель, Термезский государственный университет, Узбекистан, Сурхондаринская обл., г. Термез E-mail: <u>furqat-8484@mail.ru</u>

Тураев Хайит Худайназарович

д-р хим. наук, профессор, декан технического факультета Термезского государственного университета, Узбекистан, Сурхондаринская обл, г. Термез E-mail: hhturaev@mail.ru

Кулматов Рашид Анарович

д-р хим. наук, профессор, Национальный университет Узбекистана, Узбекистан, г. Ташкент E-mail: rashidkulmatov@yahoo.com

Эшкурбонов Фуркат Бозорович

д-р хим. наук, зав. кафедрой Термезского государственного университета, Узбекистан, Сурхондаринская обл, г. Термез E-mail: <u>furqat-8484@mail.ru</u>

FORMS OF MIGRATION OF TOXIC ELEMENTS IN WATER OF THE SURKHANDARYA RIVER

Kholmat Tillaev

Lecturer, Termez State University, Uzbekistan, Surkhondar region, Termez

Khait Turaev

Professor, Doctor of Chemistry, Dean of the Technical Faculty of Termez State University, Uzbekistan, Surkhondar region, Termez

Rashid Kulmatov

Professor, Doctor of Chemical Sciences, National University of Uzbekistan, Uzbekistan, Tashkent

Furkat Eshkurbonov

Doctor of Chemical Sciences, Head. Department of Termez State University, Uzbekistan, Surkhondar region, Termez

АННОТАШИЯ

Впервые изучена форма миграции некоторых токсичных элементов в воде р. Сурхандарьи с применением метода нейтронно-активационного анализа.

ABSTRACT

In this article first time investigated migration forms of toxis elements in the Surkhandarya river water by neutron activation analysis.

Ключевые слова: миграции, токсичных элементов, нейтронно-активационного анализа, атомно-абсорбционный

Keywords: migration, toxic elements, neutron activation analysis, atomic absorption.

Загрязнение окружающей среды в настоящее время стало проблемой мирового значения.

Вопросы охраны природы неоднократно рассматривались на заседаниях Генеральной ассамблеи

и различных конференциях ООН, а также ЮНЕСКО и других Международных организаций.

Библиографическое описание: Формы миграции токсичных элементов в воде р. Сурхандарьи // Universum: Технические науки : электрон. научн. журн. Тиллаев Х.Р. [и др.]. 2019. № 12(69). URL: http://Tuniversum.com/ru/tech/archive/item/8503

Проблемы мониторинга и охраны природной среды актуальны для государств Центральноазиатского региона, где ощущается нехватка воды как для отраслей народного хозяйства, так и для питьевых нужд.

Среди загрязнителей природной среды особая роль отводится токсичным элементам (ТЭ) и их многочисленным соединениям, обладающим, помимо прямого токсического эффекта, канцерогенными, мутагенными, гонадотоксическими и другими отрицательными воздействиями на организм человека и животных [1,2].

Для контроля состава вод с успехом используется весь арсенал аналитических методов и физико-химических методов анализа, особенно атомно-абсорбционный, эмиссионно-спектральный, рентгеноспектральный и др. Среди аналитических методов большими возможностями характеризуются ядернофизические методы, в частности нейтронно-активационный, отличающийся высокой чувствительностью, производительностью и многоэлементностью [2].

В статье приводятся результаты исследований по предварительному фракционированию и последующему нейтронно-активационному определению форм миграции некоторых токсичных элементов в воде р.Сурхандарьи.

Р. Сурхандарья — крупный приток р. Амударьи. Длина ее 196 км, в средней части расположено Южно-Сурханское водохранилище. Вода реки загрязняется в основном сельскохозяйственными (коллекторно-дренажными), частично промышленными, а также коммунально-хозяйственными сточными водами. В составе сточных вод содержатся различные загрязняющие вещества, включая токсичные элементы (ТЭ) и их соединения.

В природных водах токсичные элементы могут находиться в виде истинно растворенных, коллоидных и взвесей, обусловливая тем самым различную миграционную способность их в водной экосистеме [1]. Решение проблемы мониторинга, охраны и очистки водоемов требует изучения формы нахождения ТЭ в природных и сточных водах. Для нахождения Fe, Zn, Cu, Gr, Ni, Co, Hg в воде р.Сурхандарьи пробы воды отбирали в гидростворе Шаргунь и после выхода речной воды из Южно-Сурханского водохранилища и помещали в стеклянную посуду, которую тщательно промывали дважды перегнанной разбавленной (I:I) HNO₃, затем деионизированной водой. Перед отбором посуду 2-3 раза ополаскивали отбираемой водой. Предварительное выделение и определение знака заряда микроэлементов проводили методом электродиализа с последующим нейтронноактивационным и атомно-абсорбционным анализом. Схема фракционирования И последующего нейтронно-активационного определения форм элементов в речной воде приведены на рис.1.

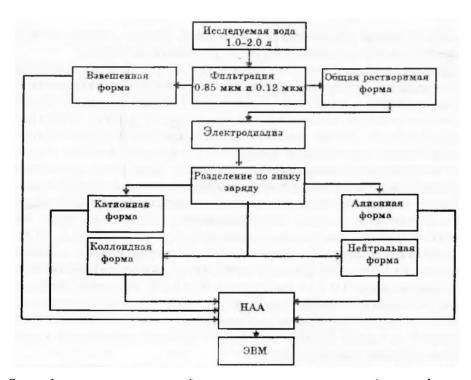


Рисунок 1. Схема фракционирования и нейтронно-активационного определения форм нахождения элементов в водах

Для экспериментов изготовили пятикамерный электродиализатор из оргстекла объемом 600 мл для разделения элементов из исследуемых вод. Между средней и катодной камерами устанавливали катионообменную мембрану МЛ-40, а между средней и анодной — анионообменную мембрану марки МА-

40. Экспериментальная оптимальная рабочая поверхность мембран $7.5~{\rm cm}^2$.

Мембраны предварительно переводили в H^+ и OH^- -формы.

В качестве электродов применяли платиновую сетку с рабочей площадью $11.5~{\rm cm}^2$. Источник питания прибора УИП-1.

На рис.2 представлены схемы электродиализатора. Ионообменные мембраны позволяют идентифицировать ионные формы, которые свободно проходят через целлофановые мембраны.

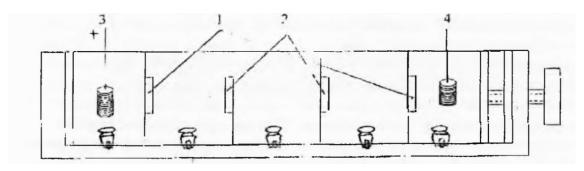


Рисунок 2. Схема пятикамерного электродиализатора: 1-ионообменные мембраны; 2—целлофан; 3,4—электроды

Перегородки из целлофана в средней камере между мембранами позволяют идентифицировать коллоидные формы.

Для проведения электродиализа целлофановые ионообменные мембраны после выдерживания в растворе, не содержащим микроэлементы с заданным значением рН, закладывали между соответствующими секциями, которые затем плотна стягивали упорной гайкой. После процесса электродиализа ионообменные и целлофановые мембраны и жидкости из каждой ячейки подвергали нейтронно-активационному анализу. Для учета возможности диффуцеллофан и мембрану ставили через контрольный опыт без электрического тока, т.е. в отсутствие электрического поля. Различные формы микроэлементов из исследуемых вод фракционировали следующим образом: воду объемом 0.5-1.0 л фильтровали и аликвоту заливали в среднюю камеру электродиализатора. Боковые камеры заполняли дистиллированной водой дополнением 10-3 М раствором KNO₃. В процессе эксперимента измеряли температуру, рН и силу тока в системе. По окончании опыта мембраны растворов катодной, анодной и средней ячеек, а также пробы "холостых" опытов подвергали радиоактивационному анализу [3].

Результаты "холостых" опытов показали, что содержание исследуемых элементов в ионообменных мембранах и реагентах - незначительно и их вкладом практически можно пренебречь (табл.1).

Селективность разделения форм элементов методом электродиализа зависит от ряда факторов. Важнейшие параметры, которые следует учитывать в процессе электродиализа исследуемых вод, - температура, сила тока и рН среды [3-5].

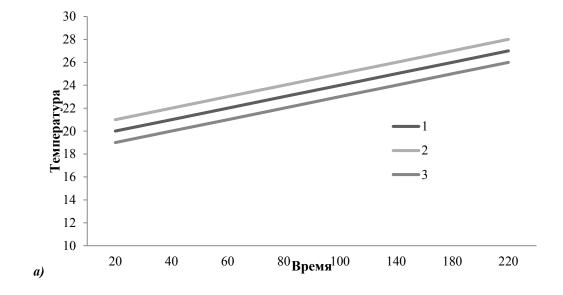
Исследование и оценка влияния этих факторов на процесс разделения форм элементов в водах позволяют выбрать оптимальные режимы эксперимента.

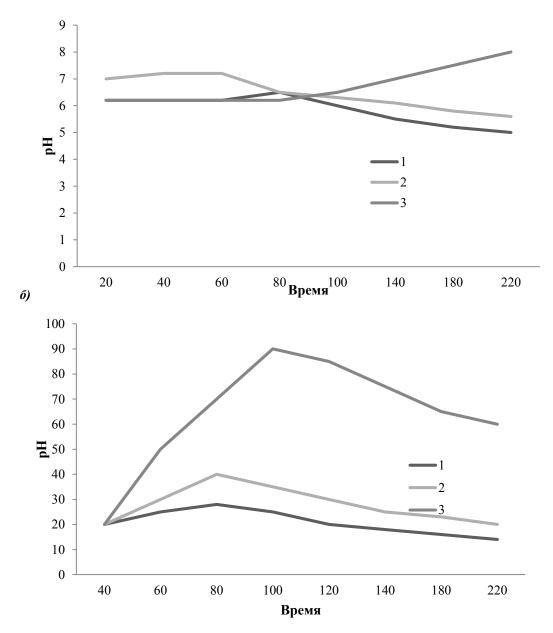
Результаты изучения изменения температуры речной и морской воды в процессе электродиализа, представленные на рис.3, свидетельствуют о том, что температура во всех камерах электродиализатора изменяется в пределах 25-30°C.

 Таблица 1.

 Содержание примесных элементов в использованных материалах, Hr/cm^2

Элемент	MK-40	MA-4Q	Целлофан	Мембранный фильтр	Фильтров, бумага "синяя лента" 0.25		
Sm	0.07	0.06	0.2	0.18			
La	0.6	33	< 0.6	1.8	1.9		
Au	0.0003	0.14	0.002	0.009	0.002		
Br	17	450	17	6.8	11		
Hg	21	0.3	15	6.1	5.9		
Cr	98	130	11	3.6	12		
Sb	6.1	12	1.1	0.38	0.71		
Se	1.1	0.46	0.0027	0.008	0.069		
Fe	600	200	58	57	170		
Zn	21	36	6.9	11 *	3.8		
Co	3.4	2.4	7.3	0.22	0.36		
Cd	< 0.05	< 0.05	0.07	< 0.06	< 0.06		


Данные по форме нахождения и миграции исследуемых элементов в воде р.Сурхандарьи показывают, что ТЭ в воде мигрируют в виде сложной совокупности взвешенных, коллоидных: катионных,


анионных и нейтральных форм, соотношение между которыми зависит от физико-химических свойств элемента и места отбора пробы (табл.2).

. $\begin{tabular}{ll} $\it Taблица~2. \end{tabular}$ Форма нахождения токсичных элементов в воде р. Сурхагдарьи, %

Форма нахождения	Gr	Hg	Zn	Fe	Cu	Ni	Co				
Створ Шаргунь											
Взвесь 0,85 мк	6,8	35,4	22,1	29,1	24,2	43,2	85,4				
Взвесь 0,12 мк	2,7	2,1	1,4	3,2	2,1	21,7	2,2				
Коллоидная (-)	2,8	1,9	4,4	15,2	5,3	5,8	11,3				
Коллоидная (+)	3,7	12,5	1,1	10,9	1,4	2,1	1,1				
Нейтральная	10,1	10,1	19,7	12,6	17,6	16,8	5,0				
Катионная	45,1	11,0	50,5	26,4	49,2	16,3	35,7				
Анионная	39,1	26,9	1,7	2,1	1,3	2,3	9,8				
После Южно-Сурханского водохранилища											
Взвесь 0,85 мк	1,9	3,8	15,1	5,3	23,7	34,2	3,3				
Взвесь 0,12 мк	2,1	3,4	1,8	11,4	2,4	23,1	12,1				
Коллоидная (-)	2,3	2,1	11,8	14,7	4,8	5,2	14,7				
Коллоидная (+)	3,6	8,5	1,4	17,2	1,5	1,3	3,9				
Нейтральная		20,9	14,7		13,8	18,4	8,1				
Катионная	5,7	12,4	50,7	41,7	51,1	18,3	44,5				
Анионная	40,5	49,7	4,5	8,4	3,2	2,1	12,7				

На основании анализа фазового распределения ТМ видно, что доля взвешенных форм ТЭ в пробах воды, отобранных в гидростворе Шаргунь, заметно выше, чем в пробах, отобранных после выхода речной воды из водохранилища.

Рисунок 3. Изменения физических параметров в процессе электродиализа: а-температура, б-рH, в-сила тока; воды: 1- р. Сурхандарьи, 2—р. Амударьи, 5-Аральского моря

В створе Шаргунь 20-40% Hg,Fe,Co, Ni мигрируют в виде взвеси, причем в сравнительно крупной фракции (>0.85 мк). Доля ТЭ, мигрирующих в форме мелкодисперсной фракции (>0.12) составляет в среднем 2—10%, коллоидная фракция невысокая, в среднем 5—15%. Из-за замедления гидродинамических процессов в водохранилище взвешенные фракции ТМ осаждаются на его дно. В связи с этим, видимо, в пробах речной воды, отобранных из водохранилища, доля ТЭ, мигрирующих в составе извеси, значительно уменьшается. В растворенной фракции основное количество ртути и хрома мигрирует в анионной

форме. Катионная форма миграции характерна для Co, Zn, Fe и Cr.

Таким образом, с применением методов электродиализа и нейтронно-активационного анализа впервые изучены формы нахождения Cr, Hg, Zn, Cu.Ni, Co в воде р. Сурхандарьи. Установлено, что ТЭ в речных водах мигрируют в совокупности со взвешенными, коллоидными и растворенными формами. На формы нахождения ТМ в речных водах влияют гидродинамические процессы. Данные о формах нахождения ТМ в воде р.Сурхандарьи можно использовать для очистки вод от Cr, Hg, Zn, Fe, Cu, Ni, Co и их соединений.

Список литературы:

- 1. Линник П.Н., Набиванец Б. И. Формы миграции металлов в пресных поверхностных водах. Л.: Гидрометео-издат, 1986. 354 с.
- 2. Кулматов Р.А. Закономерности распределения и миграции токсичных элементов в речных водах Аральского бассейна. Ташкент: Фан, 1995. 187 с.

- 3. Кулматов Р. А., Кист А. А., Исматов Э. Е. //Водные ресурсы. 1987. № 2. С. 113-118.
- 4. Kulmatov R. A., Kenjaev D., Umbarov I., Tillaev Kh. The investigation of Physic-Chemical forms of Toxic metals by Activation analysis. The fourth international conference "Modern problems of nuclear physics". Tashkent, 25—29 September, 2001. P. 262—263.
- 5. Кулматов Р. А., Умбаров И. //Узб.хим.журн. 2000, № 1. С. 70-72.