UNESCO IHE Institute for Water Education

Delft, The Netherlands

Scientific-Information Centre
Interstate Commission for Water
Coordination of Central Asia
SIC ICWC
Tashkent, Uzbekistan

СОВМЕСТНАЯ ПРОГРАММА

для наращивания потенциала интегрированного планирования и управления водными ресурсами Центральной Азии

БЛОК № 4. РЕГИОНАЛЬНОЕ СОТРУДНИЧЕСТВО НА ТРАНСГРАНИЧНЫХ РЕКАХ

Модуль 4.2

Методы и инструменты комплексного анализа и интегрированного управления водными и энергетическими ресурсами трансграничных рек бассейна Аральского моря

А.Сорокин, НИЦ МКВК

Темы модуля 4.2

Методы и инструменты комплексного анализа и интегрированного управления водными и энергетическими ресурсами трансграничных рек бассейна Аральского моря

- **4.2.1** Опыт создания и использования **моделей** внутригодового и многолетнего **управления** водными и энергетическими ресурсами трансграничных рек (**A.Copokuh**)
- **4.2.2** Опыт создания и использования региональных **информационных** систем (Д.Сорокин, А.Кац)
- **4.2.3** Опыт создания и использования **автоматизированных систем** контроля за распределением трансграничных водных ресурсов (**А.Лактионов**)
- **4.2.4** Опыт создания и использования интегрированных бассейновых моделей, и их совершенствование на основе развития **систем поддержки принятия решений** и поиска консенсуса в управлении (**А.Сорокин**)

Темы модуля 4.2

Методы и инструменты комплексного анализа и интегрированного управления водными и энергетическими ресурсами трансграничных рек бассейна Аральского моря

Цель: Подготовка тренеров по системному **анализу** и решению **стратегических и тактических задач интегрированного управления** водными и энергетическими ресурсами трансграничных рек методами математического моделирования водохозяйственной ситуации и поиска консенсуса в управлении **Задачи:**

- На примере бассейна Аральского моря **раскрыть подходы и принципы комплексного анализа и управления** водными и энергетическими ресурсами трансграничных рек
- **Ознакомить** с эффективными **методами интегрированного управления** водными и энергетическими ресурсами трансграничных рек, механизмами **поиска консенсуса** по совместному управлению на межгосударственном и межотраслевом уровнях,
- Ознакомить с инструментами (моделями, информационно-программными комплексами) анализа водохозяйственной ситуации, планирования и оперативного управления водными и энергетическими ресурсами их возможности, развитие.

Темы модуля 4.2

Методы и инструменты комплексного анализа и интегрированного управления водными и энергетическими ресурсами трансграничных рек бассейна Аральского моря

ВОПРОСЫ

- Знакомы ли Вы с понятием **ИУВР**? Приведите пример использования ИУВР на бассейновом уровне (сеть трансграничных рек, каналов).
- Приходилось ли Вам **применять комплексный** (интегрированный) **подход** в Вашей профессиональной деятельности? Приведите пример.
- Пользуетесь ли Вы в своей профессиональной деятельности **БД, моделями**, системами поддержки принятия решений или **результатами анализа** (оценок), выполняемого другими? Приведите пример.
- Удовлетворяет Вашим запросам существующие **сети обмена данными** (доступность, оперативность и др.)?
- Заходите ли Вы на портал CAWater-Info?
- Знакомы ли Вы с системой **SCADA**?
- Знакомы ли Вы с методами нахождения **компромиссны**х решений, консенсуса? Приведите пример.

Темы модуля 4.2

Методы и инструменты комплексного анализа и интегрированного управления водными и энергетическими ресурсами трансграничных рек бассейна Аральского моря

Рекомендуемая литература

- Сборники научных трудов НИЦ МКВК (Духовный В.А., Тучин А.И., Савицкий А.Г., Сорокин А.Г)
- Сборники докладов из курса лекций Тренингового центра МКВК (Тучин А.И., ,Сорокин А.Г.).
- Вспомогательные материалы для подготовки специалистов высшего и среднего звена в водном хозяйстве центральноазиатских государств. НИЦ МКВК (Духовный В.А., Соколов В.И)
- Доклады из курса лекций Тренингового центра МКВК (Зырянов А.Г., Тучин А.И., Сорокин А.Г., Сорокин Д.А.).
- Петров Г.Н (Таджикистан) Оптимизация режимов работы гидроузлов с водохранилищами. Душанбе, 2009.
- Материалы второй международной конференции "Управление трансграничными водными ресурсами", Москва, 3-4 июня 2010 г (Исмайылов Г.Х, Болгов М.В., Наврузов С.Т.)
- Система автоматизации и диспетчерезации Учкурганского гидроузла на реке Нарын. SDC, БВО "Сырдарья", НИЦ МКВК.
- Региональная информационная база водного сектора ЦА: веб-портал и информационная система. Серия "Публикации проекта CAREWIB", вып. 7, Ташкент, 2007.
- Стратегия совершенствования информационной службы водного сектора ЦА. CAREWIB, 2010
- -<u>WWW.Calwaller-III (С. 11 с.)</u> данные и отчеты аналитического блока (анализ водохозяйственной обстановки бассейнов рек Амударья и Сырдарья)

Руководство по использованию портала CAWater-info в повседневной практике. Проект CAREWIB, 2010

- www.cawater-info.net - проект RIVERTWIN

- Презентации по темам модуля 4.2 (А.Лактионов, Д.Сорокин, А.Кац, А.Сорокин)

Раскрытие тем модуля 4.2

Методы и инструменты комплексного анализа и интегрированного управления водными и энергетическими ресурсами трансграничных рек бассейна Аральского моря

Тема 4.2.1 Опыт создания и использования моделей внутригодового и многолетнего управления водными и энергетическими ресурсами трансграничных рек

Главное достижение МКВК – осуществление *бесконфликтного обеспечения водой* стран бассейна Аральского моря.

В тоже время, устойчивость управления имеет тенденцию к снижению...

снижение точности прогнозов, учета воды и рост потерь, наличие дефицитов воды, вызываемых природными и антропогенными факторами, *неравномерность их распределения* по территории, во времени,

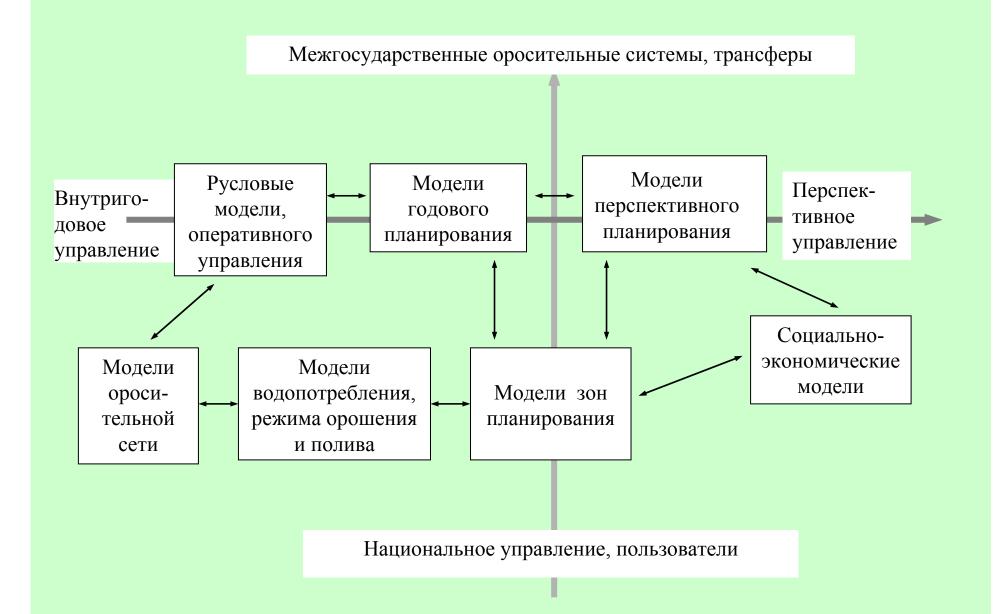
не согласованы (не закреплены долгосрочными Соглашениями) новые *требования* к водному режиму – *экологические* (*дельты рек, экосистемы, Арал*), *энергетические* (ГЭС) попуски, не согласованы методы и процедуры нахождения *консенсуса* (основанного на компромиссах) в достижении целей межгосударственного и межсекторного управления (энергетика-экология-орошение).

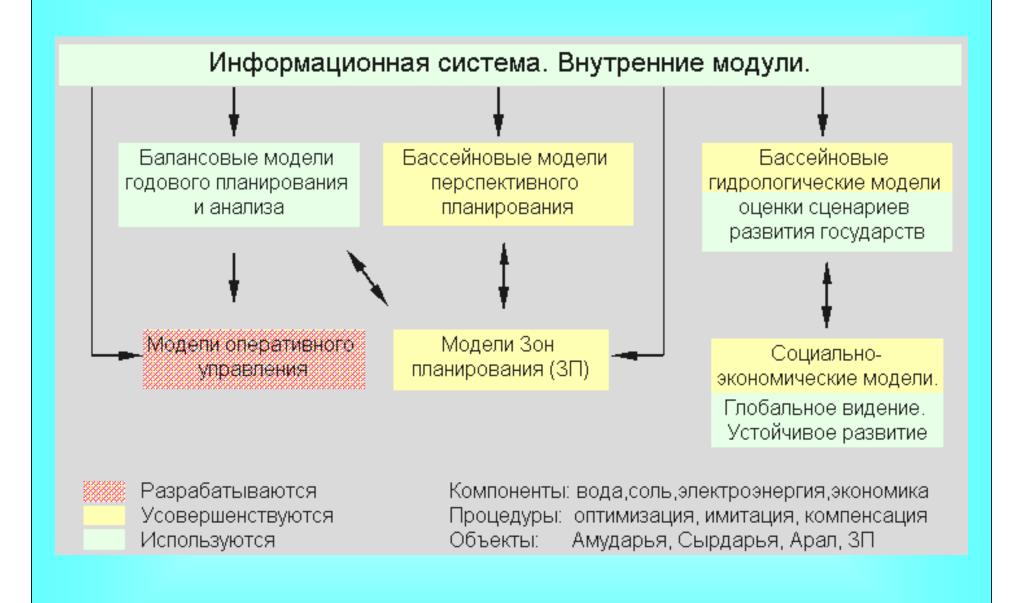
Необходим постоянный *мониторинг и анализ* водохозяйственной ситуации в бассейне, с рассмотрением альтернатив управления, оценкой *риска* появления *экстремальных ситуаций* и *конфликтов*, с рекомендациями по управлению.

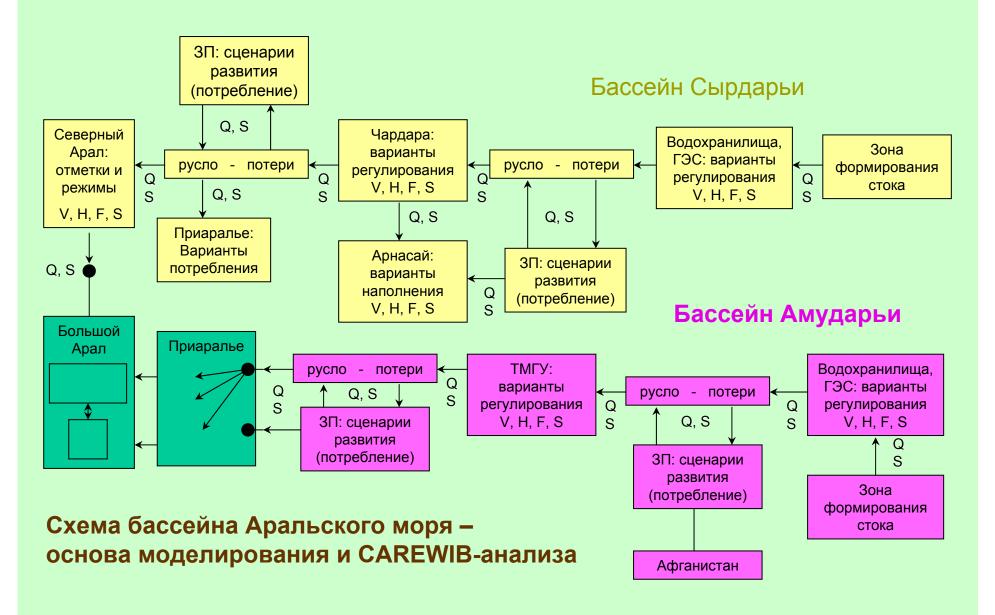
Раскрытие тем модуля 4.2

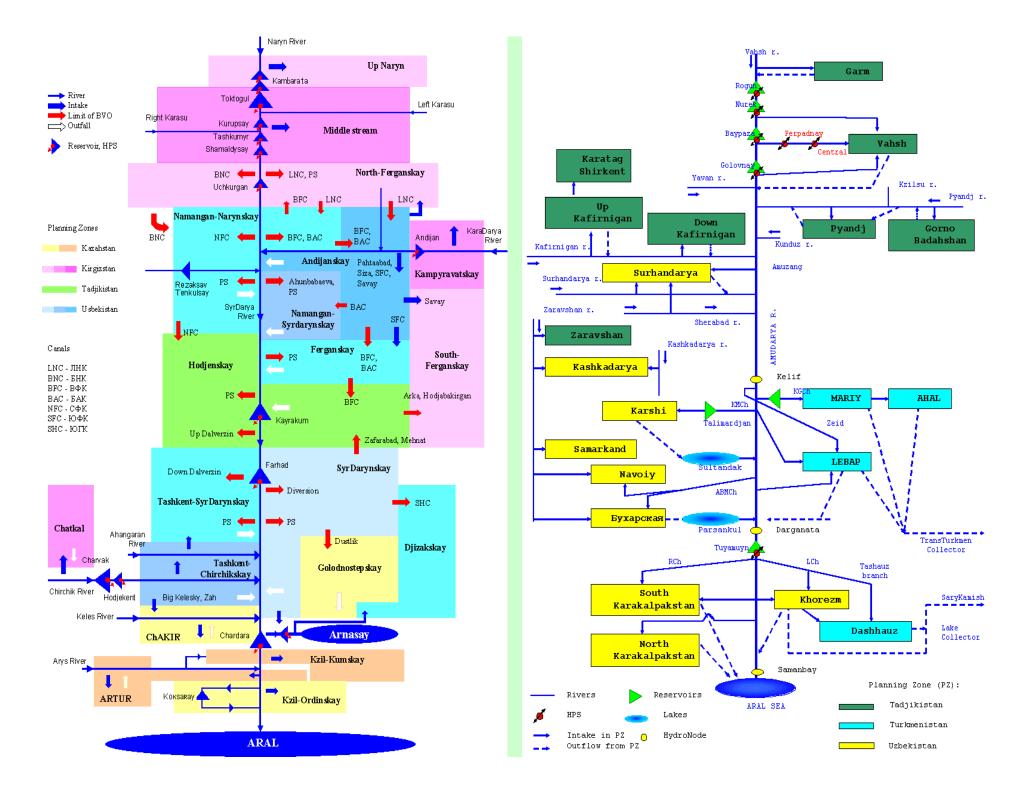
Методы и инструменты комплексного анализа и интегрированного управления водными и энергетическими ресурсами трансграничных рек бассейна Аральского моря

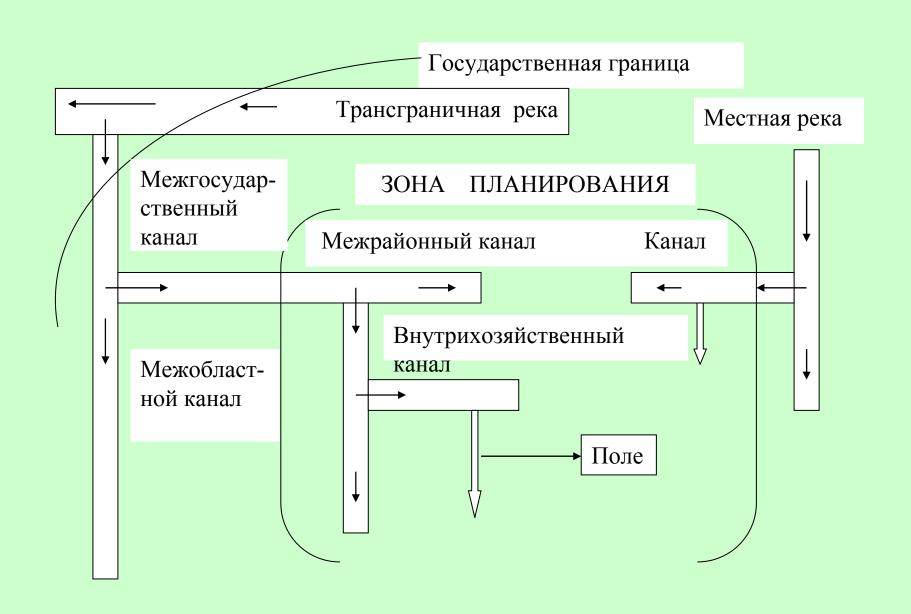
Тема 4.2.1 Опыт создания и использования моделей внутригодового и многолетнего управления водными и энергетическими ресурсами трансграничных рек

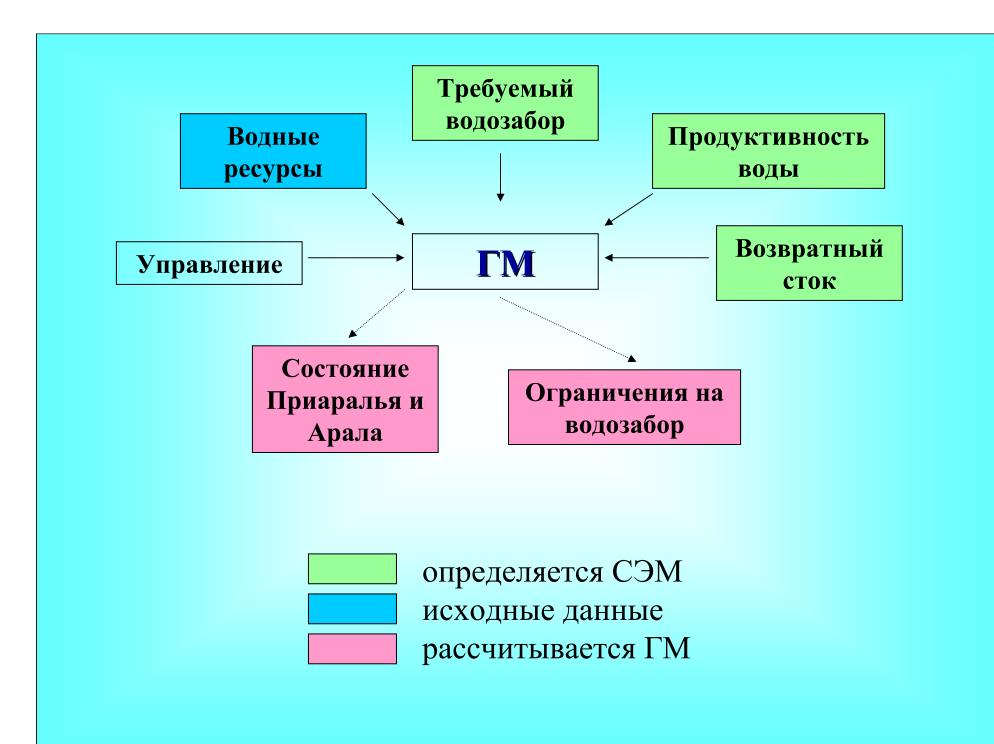

Общая цель управления в бассейне состоит в том, чтобы при соблюдении устойчивого текущего функционирования ВХС бассейна был обеспечен переход к устойчивому долгосрочному экологически безопасному водопользованию, с помощью эффективных (рациональных, оптимальных) управляющих воздействий.


Примеры: имитационные и оптимизационные модели ЮСАИД, EPIC, WARMAP, NASPI, RIVERTWIN


- <u>Сезонное и годовое планирование</u> регулирование стока, распределение воды по территории и во времени
- + оперативное управление корректировка плана,
- **+ многолетнее** регулирование 5-7 лет ограничения по наполнению вдхр. для сезонного (годового) планирования, создание многолетних запасов стока,
- + управление по согласованным **правилам** распределение регулирующих между водохранилищами и ГЭС, соблюдение лимитов на водозабор,
- + **имитационный эксперимент** альтернативы управления и **экономическая оценка** последствий (бассейновый эффект, эффекты/ущербы в секторах экономик стран), компенсационные механизмы, поиск консенсуса правило Парето и др.
- + оценка затрат (услуг) по регулированию стока водохранилищными гидроузлами с ГЭС расчет цены регулирования, объемов попусков
- <u>Специальные модели</u> динамическое моделирование трансформации стока рек, расчета русловых потерь, расчет транспорта наносов и заиления водохранилищ и др


Ташкент, 7-16 июня 2010 г.





Постановка задачи

Построение режимов работы водохранилищ заключается в выборе режима

$$U_{k,t}$$
 $k = 1, R$ $t = 1, T$

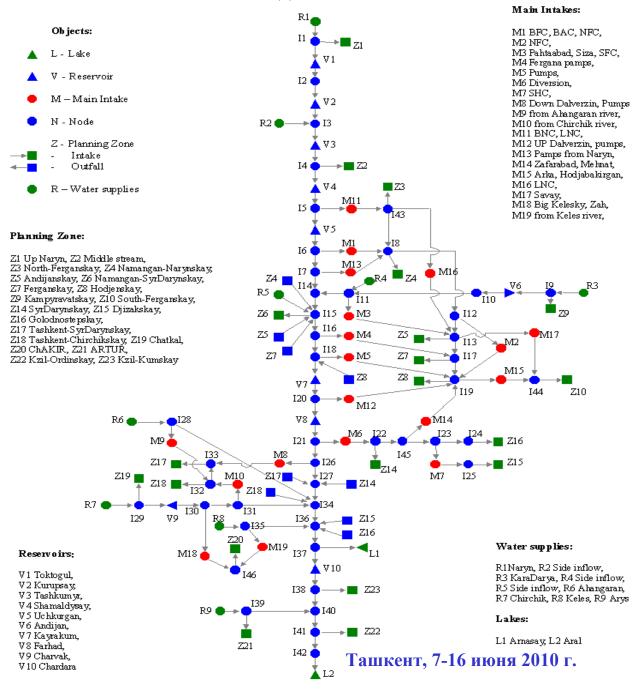
который удовлетворяет цели планирования

$$F \rightarrow max$$
 (или min)

и системе ограничений

 $G_{i, t} = 0, i = 1, n$ (балансовые уравнения) $P_{j, t} > 0, j = 1, m$ (допустимые объёмы водохранилищ, допустимые расходы рек и каналов),

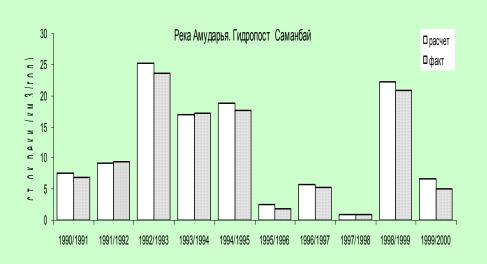
где: **k**, **R** - индекс и количество водохранилищ,

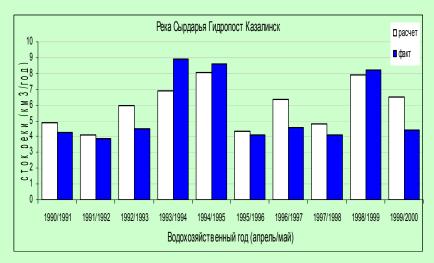

i, j, n, m - индексы и количество ограничений,

t, T - временной шаг и период расчета,

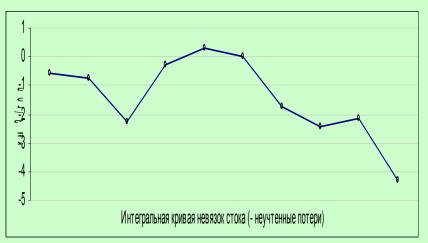
U - зарегулированный сток,

F - целевая функция.

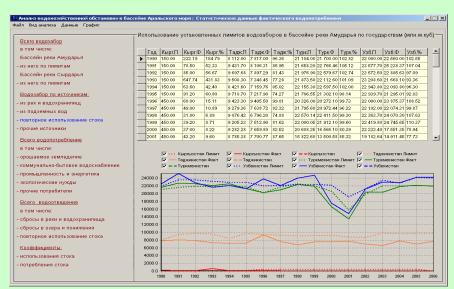


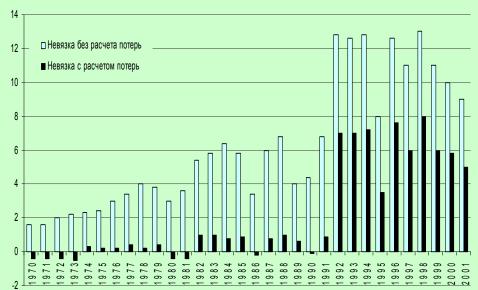

Method of modeled system presentation is graph method, under which water network is simulated in algorithm by grid of arch-nodes. For each node equations of water and salt conservation are solved. Salt is considered

as conservative


admixture.

Testing models. Inflow to Syrdarya and Amudarya river deltas. Comparison of calculated and measured data. Integrated curves of deviations.

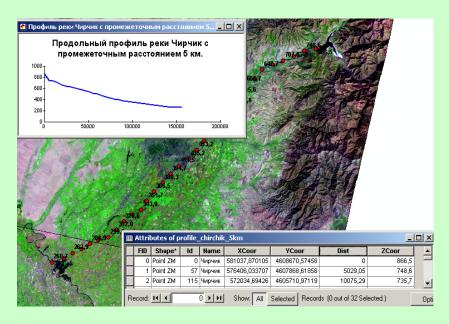




Анализ водохозяйственных и русловых балансов

Расходы воды		Потери воды в р	реке Амударья %								
в реке Амударья, куб.м/сек	Среднее т	ечение	Нижнее	течение							
	Вегетация	Межвегетация	Вегетация	Межвегетация							
< 500	79	58	1220	810							
500-1000	37	05	810	08							
1000-2500	05	-	37	-							
> 2500	39 _{Ta}	шкент, 7-16 ⁻ июня 2010	812	-							

Динамика емкостей основных водохранилищ бассейна реки Амударья до 2050 года, учитывающая заиление, куб.км

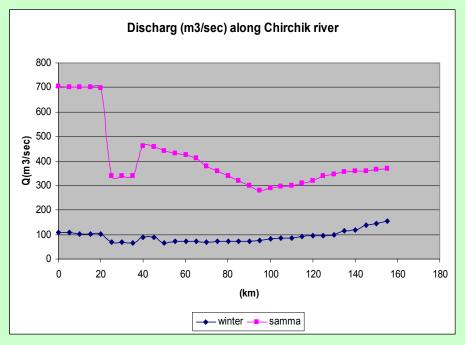


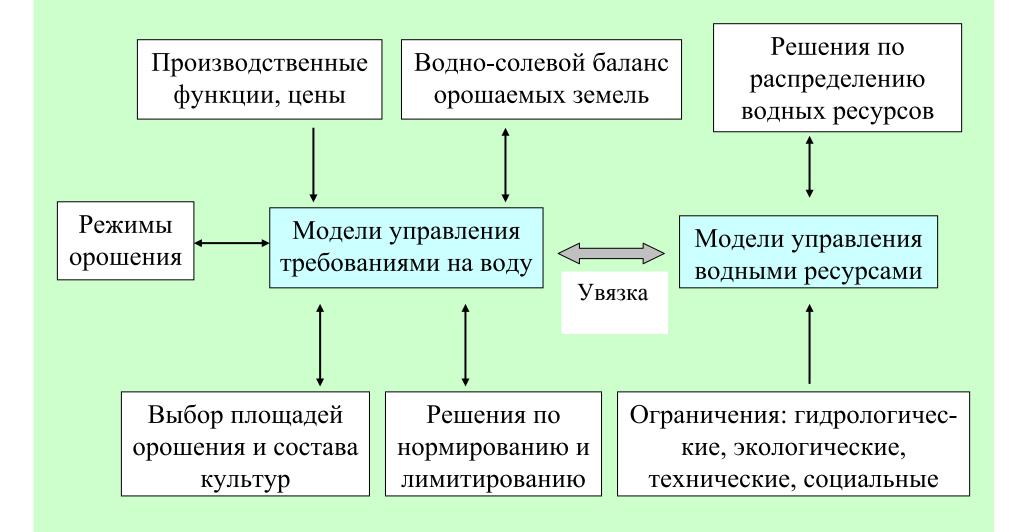
Год	Сценарий	Нурек	ТМГУ*	Рогун	Итого
1972	-	10.5	-	1	10.5
1978	1	9.8	7.8	-	17.6
1989	-	8.7	7.2	1	15.9
2010	-	8.0	6.7	1	14.7
2020	1	7.3	6.3/6.2	-	13.6/ 13.5
	2	7.6	6.3/6.2	13.3	27.2/ 27.1
2030	1	6.8	6.1/5.9	-	12.9/ 12.7
	2	7.6	6.1/5.9	12.2	25.9/ 25.7
2050	1	6.0	6.0/5.7	1	12.0/ 11.7
	2	7.4	6.0/5.7	11.1	24.5/ 24.2
	2-1	+ 1.4	0	+ 11.1	+ 12.5

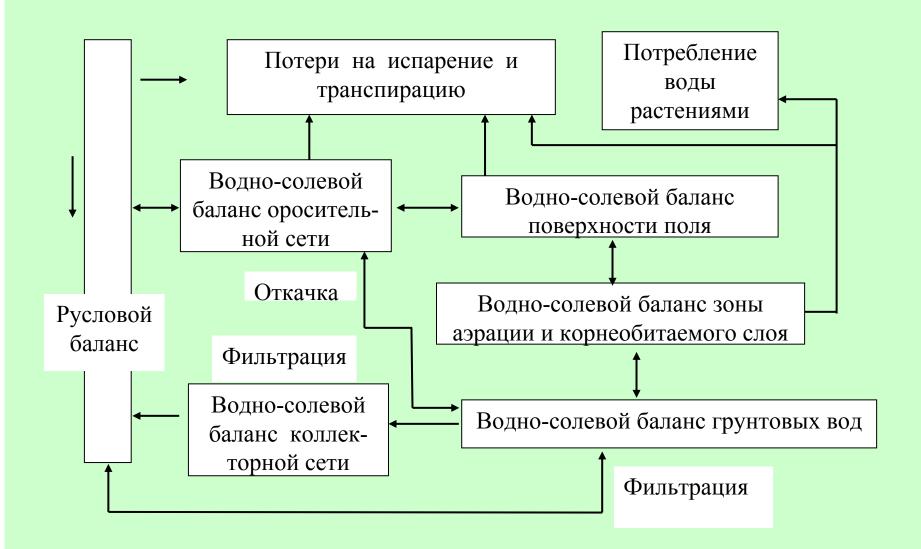
^{*} Промывной режим / фактический режим

Бассейн Сырдарьи: эксперименты

	Де	фицит в (км³/	Дефицит элек. (млрд.кВт.ч)				
Сценарии регулирования	Узбек	истан	Казах	стан	Кирги	зстан	
	сред	max	сред	max	сред	max	
Энергетический	1.17	2.12	0.53	1.29	0.05	0.85	
Ирригационный	0.07	0.51	0.05	0.46	2.41	4.40	
Энерго-ирригационный	0.17	0.70	0.11	0.53	1.29	2.10	
Энергетический + Камбарата	0.80	1.82	0.40	0.96	0.00	0.00	
Энерго-ирригац. + Камбарата	0.00	0.00	0.00	0.00	0.00	0.00	



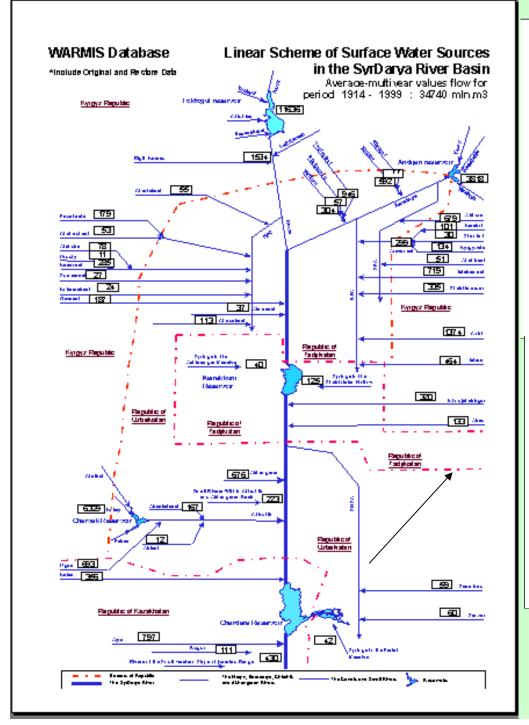



Динамическая модель качества воды Qual-2 → Qual-Chirchik

WAWE (А.Тучин)

Раскрытие тем модуля 4.2

Методы и инструменты комплексного анализа и интегрированного управления водными и энергетическими ресурсами трансграничных рек бассейна Аральского моря


Тема 4.2.2 Опыт создания и использования региональных информационных систем

По данной теме на примере проекта CAREWIB необходимо познакомить тренеров с подходами построения, возможностями и опытом использования региональных информационных систем. Особое внимание должно быть уделено прозрачности информации, аналитическим инструментам, доступу к данным и аналитическим отчетам через Интернет и внедрению сервисных служб (решение типовых задач моделирования).

Необходимо информировать тренеров о БД и аналитических инструментах БВО, а также **о дальнейшем развитии информационной системы CAREWIB**, включая совершенствование механизмов сбора, обработки, анализа и интерпретации данных.

Дальнейшее развитие информационного портала CAWATER-INFO и самой информационной системы должно быть направлено в том числе и на предоставляемые через Интернет пользовательских услуг по моделированию.

📰 Select Series of Years for Calculation Average-multiyear Flow _ | D | X | Evaluation of the Hatural Surface How Data Base Tacis WARMIS My Reach J Ori Start year 1914 Y River AmuDarya Basin 1999 Res End year O RA Basin 🔘 Aral Basin 11000 12000 Reports: Reports with Restore Original Data Reports with Original Data Evaluation of the Natural Surface Flow (average-Evaluation of the Natural Surface Flow (average-multiyear multiyear monthly discharge) monthly discharge) Evaluation of the Natural Surface Flow (average-Evaluation of the Natural Surface Flow (average-multiyear multiyear monthly flow) monthly flow) Linear Scheme of Surface Water Sources Linear Scheme of Surface Water Sources Preview Report5 Русский English

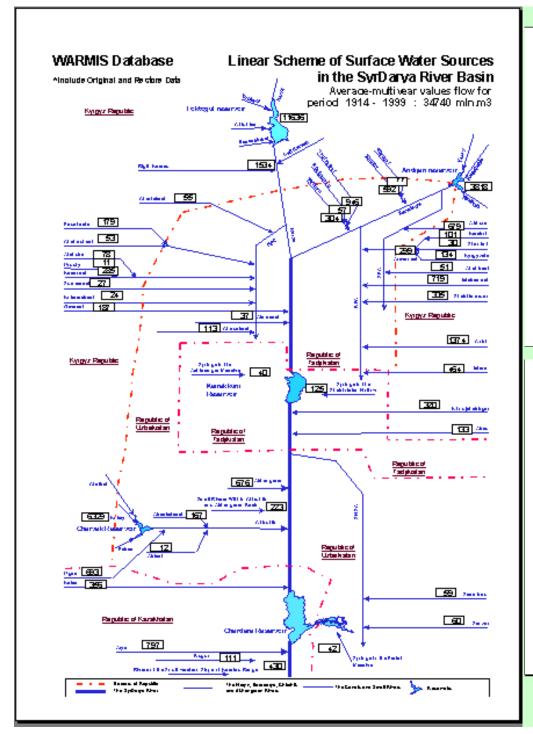
* Including original and restore data

WARMIS Databa Evaluation of the Natural Surface Flow in the Syr Darya River Basin(1914 - 1999)

Code	River	Gauge		- 1	III	IV	V	VI	VII	VIII	IX	Х	XI	ХII	Flow	P5%	P 50%	P9 09
Jpper reach Naryn																		
102 2211 0109 0001 0000	Right + Left Kara	gr-Born	55.0	63.3	81.4	202.6	300.0	257.2	1795	111.0	79.6	74.4	68.5	61,7	1534	2181	1450	110
102 221 1 0189 0000 0000	Narva - Tok tog	iresenuo ir in 110 w	378.1	342.0	413.3	660 D	1538,6	237 2.1	2179.7	1489.4	0.008	575.7	471.4	406.3	11636	16117	11002	875
			(33,2	4B5,4	494,7	862,6	1838,6	2629,3	2359,2	1600,5	888,6	650,2	539,9	468,0	13170	18298	12492	990
Jpper reach Karadanya																		
102 2212 0154 0000 0000	Karadanya - Ar	digan resemblir in flow	118,3	106,1	156,2	367,1	706,8	7,90,1	577,6	328,1	193,5	17.2,4	156,9	145,4	38 18	6450	3691	2 21
			118,3	106,1	156,2	367,1	706,8	7,90,1	577,6	328,1	193,5	172,4	155,9	145,4	3818	6450	3691	228
mall rivers within Nary	n-Karadanya																	
102 2212 0066 0047 0000			8,5	8,0	18,1	55,7	70,9	50,7	30,3	16,9	11,5	11,8	11,8	10,1	384	499	291	1
102 2212 0067 0078 0000	Tentyaksal-Ci		26,1	24 D	49,7	154,1	231,5	171,6	98,4	55,6	36,9	34,3	34,5	29,9	9 46	17 32	930	5
102 2212 0121 0007 0021	Changet-Chan	opet .	3,8	4,1	8,2	18,8	16,3	7,3	3,5	2,1	2,2	3,3	3,9	3,7	77	164	74	
102 2212 0121 0050 0000	Kuqart-Mikkal	lou	15,2	14,2	30,8	117,3	157,9	104,9	54,3	26,6	16,5	17,2	19,7	17,3	552	10 14	573	3
223 0003 0000 0000 0000	Shaldansal-Si	ataı	2,1	2Д	3,8	9,5	12,4	8,6	5Д	3,3	2,5	2,5	2,5	2,3		85	57	
			55,8	52,3	110,6	355,5	489,0	343,2	191,4	10 €,5	68,6	69Д	72,5	63,2	1976	3494	1925	11
tigthbank Fergana Vall	ey																	
102 2105 0034 0000 0000			2,1	2Д	4,7	17,7	34,7	27,1	9,4	4,3	2,9	2,9	2,9	2,4	1 13	203	109	
102 2136 00 16 0000 0000	Almas sal - Sab		3,4	3,1	3,3	3,1	3,1	3,1	3,0	2,8	2,7	3Д	3Д	3,3		49	37	
102 2139 0065 0000 0000	Gauasal-Gaua		3,7	3,2	4,8	20,4	56,6	50 JI	19,0	8,8	5,7	5,4	5Д	4,3		250	184	1
102 2148 0034 0000 0000	Koksanksal- F		0,8	0,6	0,6	1,6	4,6	5,7	4,D	2,1	1,1	0,8	0,8	8,0		41	23	
102 2161 0069 0000 0000	Simsarsal-Si		1,0	1,0	1,3	2,7	5,0	4,9	3,5	2,3	1,6	1,3	1,2	1,1	27	38	26	
102 2181 0062 0003 0000	Atabika - Orlot	akol	3,5	3Д	3,6	6,7	14,5	14,9	10,2	6,4	4,3	3,7	3,6	3,4		105	78	
102 2181 0063 0002 0000	Unicity - Morti		1,0	0,9	0,7	0,8	1,6	1,9	0,9	0,4	0,3	0,5	0,7	0,9		22	11	
102 2181 0066 0000 0000	Kasarsal - Kyz		1,4	1,5	2,2	16,6	33,8	52,6	76,9	63,8	21,2	10,5	5,3	1,8		402	286	2
102 2195 0072 0015 0000	Charactral - C		2,1	1,8	2,3	6Д	11,7	10,0	5,5	3,5	2,9	2,6	2,5	2,4	53	74	54	
102 2195 0092 0000 0000	Pads Laata - To		4.9	4,1	5,1	14,0	33,4	40,4	31,3	17,8	9,7	7,2	6Д	5,4		253	174	- 1
222 0092 0000 0000 0000	Chartaksal - Ka		4,3	4,0	4,1	1,8	5,5	5,6	6,1	4,4	3,5	4,1	1,2	4,4	55	65	54	
233 0300 0000 0000 0000	Ashtam qar M.	- Small Ribe &	0,7	3,4	1,6	6Д	11,3	9,2	3,2	1,5	0,9	1,0	0,9	0,8		72	38	
			28,9	28,4	34,3	98 JI	215,9	225,6	173,0	118,2	56,8	42,9	36Д	31,0	1089	1621	1073	7:
eftbank Fergana Valle								45.3	010			48.0			400	420	132	1
102 1907 0048 0000 0000	Aks 1 - Dazgor		6.2	5,D 10.7	5, t 9,9	5,3 9.9	7,5 23.0	16,7 58,1	24,5 115,3	21 D 112 2	14,4 52.2	10,9 26,4	8,5 18,5	7,4	133 464	172 577	478	3
20 ¢ 0059 0000 0000 0000 211 0038 0000 0000 0000	Istara - Tasiku Akbura - Tuleke		13,1 22.1	18.8			72.0		133.3	106.8	52,2 60,0	39.2	18,5			883	470 681	5
					21,6	32,2		117,9						25,3				
212 0045 0013 0008 0000	Starkel-Star		0,8	0,6	0,7	1,1	3,9	7,3	6,6	10	1,9 5.5	1,2 6,5	1,0	0,8		40	29 10 1	
212 0045 0026 0000 0000 212 0061 0016 0000 0000	Karako I - Morti		5,7 3,3	5,1	5,5	6,9	14,5	18,8	12,3 31,7	7,1		6.5	6,4	6,2		144 163	101	1
	Kyroyzata - Kyr			2,7	2,9	1.0	13,0	25,9	45.4	23,6	11,4			3,9	134 299	163 438	133 305	
212 0052 0000 0000 0000 213 0039 0000 0000 0000	Arauansal - Kar Istaliam sal - Ud		18,4 33.5	15,5 28.4	16,1 29.0	16 JJ 28 7	30,2 53.7	45,2 112.9	143,4	33,4 106.0	19,2 62,7	18,8 46,5	19,5 36,3	19,7 36.2		10 40	706	5
214 0052 0000 0000 0000	Staktmardat		16,7	14.3	15.0	13.6	20.6	112,9	52.5	45.1	28.5	22.7	19.3	16,9	3 0 5	372	303	2
215 0064 0000 0000 0000	Soki-Sankai		32.0	26.6	15,u 27.7	32.6	74.8	191.5	351.4	325 E	159.1	59.9	45.5	37.4	1374	1638	1384	- 11
215 0044 0000 0000 0000 225 0031 0000 0000 0000	Abstinat- Uni				21,1					325 JI	159,1	3.4			1374	1638	1384	
	Khodiabak toan		2,6 13.7	11.9	12.7	3,2 13,6	6,0 23.1	9,5 46,5	7,2 63,3	52.4	29.8	21.0	3,1 16.6	2,8 15,1	320	394	30 322	2
228 0045 0000 0000 0000																		

* Including original and restore dat

WARMIS Databa Evaluation of the Natural Surface Flow in the Syr Darya River Basin(1914 - 1999)


																	Flow: m	a IIIIor
Code	River	Gauge	- 1	- 11	H	IV	V	VI	VII	VIII	1X	×	XI	ΧII	Flow	P5%	P 50%	P90
CHA KIR																		
102 1727 0002 0000 0000	Kees-Morti		28.9	29.4	48.1	60.8	45.0	15.3	10.7	11.7	21.3	26.9	29.1	28.8	356	628	3.43	
102 1750 0132 0012 0000	Aksakatasal - Ka	ram aza r	6Д	6,7	17,4	40,3	38,8	19,4	8,6	5Д	4,0	5,7	7,8	6,8	167	288	158	
102 1750 0138 0008 0000	Aktasi - Aktasi		0,5	0,7	2,0	3,1	1,8	0,9	0,5	0,4	0,3	0.4	0,5	0,6	12	19	11	
02 1760 0163 0001 0000			20,6	20,9	44,1	1 16 .4	166,7	125,1	81,1	41,3	25,9	24,6	24,6	23,3	693	1031	6.69	
02 1760 0160 0000 0000			170,3	149 Д	213,3	544,9	1097,1	1410,8	1104,1	619,6	348,2	259,9	220,1	191,2	63 23	89 40	6 16 1	
02 1776 0167 0000 0000			11,7	12,5	32,9	155,5	220,0	1 17 ,5	46,7	20,1	12,9	15,0	17 ,1	14,3	676	10 32	656	
34 0000 0000 0000 0000	Chicke Basis -	Small Ribers	6,3	21,4	17,6	41,8	46,2	32,4	19,2	10,4	6,8	6,8	7,4	7,0	2 23	404	2 14	
			244,3	240,6	375,4	962,8	1593,6	1721,3	1270,9	708,4	420,4	339,1	306,6	27 2,1	8456	12349	8211	
iddle reach Syr Darya																		
16 0 158 0000 0000 0000	Sanzar - Kyrk		3,3	3,1	4,6	9,4	15,1	7,3	3,2	2,4	2,2	2,8	3,2	3,3	60	88	60	
17 0026 0000 0000 0000	Zaam hat - Dtal	DEI	2,9	2,4	2,6	4,0	10,8	11,8	7,1	4,4	3,5	3,5	3,1	2,9	53	26	58	
235 0000 0000 0000 0000			4,5	3,9	3,9	4.0	7,7	16,9	27,8	25 J	12,6	7,7	5,7	4,9	125	161	125	
236 0000 0000 0000 0000	Farkt Massue -	Small Rivers	2,1	3,5	2,5	4,6	8,8	6,7	3,6	2,3	2Д	2,1	2,1	2,1	42	64	41	
			12,7	12,9	13,6	22 JJ	42,4	42,7	£1,8	34,1	20,3	16,1	14,2	13,1	286	400	283	
RTUR																		
102 1381 0025 0000 0000	Anva - Sharkter		79.4	88.6	157.0	169.3	89.4	32.5	14.1	6Д	19.7	36.1	46.6	58.6	797	19 49	721	
220 0 115 0000 0000 0000	Bigin - Red bit	lge .	5,7	11,6	34,5	35,7	14,6	2,9	0,5	0,1	0,1	0,3	1,3	3,6	111	2 65	101	
			86,2	100,2	191,6	205,0	104,0	36,4	14,6	6,2	19,8	36,4	67.9	62,2	908	2218	822	
own reach Syr Danya																		
22 1 0000 0000 0000 0000	Kamar Raige -	Sm aill Ribers	28,4	76,6	95,1	107,5	49,9	15,1	5,3	2Д	5,2	10,2	14,7	20,2	430	1130	3 60	
			28,4	76,6	95,1	107,5	49,9	15,1	5,3	2,0	5,2	10,2	14,7	20,2	430	1130	360	Τ
Average-multivear values flow:		1175	1164	1620	3148	5383	6494	5621	3743	2122	1609	1400	1261	34740	51900	33474	2	

Flow (km3):

P 5% = 51.9

P 50% = 33.47

P 90% = 24.35

* Including original and restore data

WARMIS Databa Evaluation of the Natural Surface Flow in the Syr Darya River Basin(1914 - 1999)

Code	River	Gauge	- 1	- 1	III	IV	V	VI	VII	VIII	1X	X	XI	ХII	Flow	P5%	P 50%	P9 09
Jpper reach Naryn																		
102 2211 0109 0001 0000	Right + Left Kara		55,0	ವ್ರಾ	81,4	202,6	300,0	257,2	179,5	111,0	79,6	74,4	68,5	61,7	1534	2181	1490	110
102 2211 0189 0000 0000	Narys - Tok tog	i i resenuo ir in flow	378,1	342,0	413,3	66D JJ	1538,6	2372,1	2179,7	1489,4	0,608	575,7	471,4	406,3	11636	16117	11002	875
			433,2	£05,£	494,7	862,6	1838,6	2629,3	2359,2	1600,5	888,6	650,2	539,9	468,D	13170	18298	12492	990
Jpper reach Karadarya																		
102 2212 0154 0000 0000	Kaladanya - Ar	dițan reseu oli în 1000	118,3	106,1	156,2	367 ,1	706,8	790,1	577,6	328,1	193,5	17.2,4	156,9	145,4	38 18	6450	3691	22
			118,3	106,1	156,2	1, 367	706,8	790,1	577,6	328,1	193,5	17.2,4	155,9	145,4	3818	6450	3691	221
Small rivers within Nary	n-Karadarya																	
102 2212 0066 0047 0000			8,5	8,0	18,1	55,7	70,9	50,7	30,3	16,9	11,5	11,8	11,8	10,1	384	499	291	1
102 2212 0067 0078 0000			26,1	24 D	49,7	154,1	231,5	171,6	98,4	55,6	36,9	34,3	34,5	29,9	9.46	17 32	930	
102 2212 0121 0007 0021			3,8	4,1	8,2	18,8	16,3	7,3	3,5	2,1	2,2	3,3	3,9	3,7	. 77	164	74	
102 2212 0121 0050 0000 223 0003 0000 0000 0000	Kigart-Ukial		15,2 2,1	14.2 2.0	30,8 3,8	117,3	157,9	104,9	54,3 50	26,6 3,3	16,5 2,5	17,2 2,5	19,7 2.5	17,3 2,3	592 57	10 14 85	573 57	1
223 0003 0000 0000	Statiansal-Si	iauai	55.8	52.3	110.6	355.5	489.D	343.2	191.4	104.5	68.6	69 D	72.5	63.2	1976	3494	1925	11
Rigthbank Fergana Vall	•••		00,0	32,3	110,0	330,0	W3,U	363,2	151,4	10 4,5	00,0	05,0	12,0	03,2	13/6	3434	1023	11
102 2105 0034 0000 0000	-	almora (m. c. et)	2,1	2.0	4.7	17.7	34,7	27.1	9,4	4.3	2.9	2.9	2.9	2.4	1 13	203	109	
102 2 136 00 16 0000 0000	A in as sal - Sab		3,4	3.1	3.3	3.1	3.1	3.1	30	2.8	23	3.0	30	3.3	37	49	37	
102 2139 0065 0000 0000	Gauasal-Gaua		3.7	3.2	4.8	20.4	56.6	50.0	190	8.8	5.7	5.4	S D	4.3	187	250	184	
102 2148 0034 0000 0000	Koksanksal- k		0.8	0.6	0,6	1.6	4,6	5,7	40	2.1	1.1	0.8	0.8	0.8	24	41	23	
102 2161 0069 0000 0000	Simsarsal-Si		1.0	10	1.3	2.7	5.0	4.9	3.5	2.3	1.5	1.3	12	1.1	27	38	26	
102 2181 0052 0003 0000	Alabika - Orlot	akol	3.5	3,0	3,5	6.7	14,5	14.9	10.2	6,4	4.3	3,7	3,6	3,4	78	105	78	
102 2181 0063 0002 0000	Unicity - Morti		1,0	0,9	0,7	0,8	1,6	1,9	0,9	0,4	0,3	0,5	0,7	0,9	11	22	11	
102 2181 0066 0000 0000	Kasarsal - Kyz	yffoko i	1,4	1,5	2,2	14,4	33,8	52,6	76,9	63,8	21,2	10,5	5,3	1,8	285	402	286	- 2
102 2195 0072 0015 0000	Characterist - C		2,1	1,8	2,3	6Д	11,7	10,0	5,5	3,5	2,9	2,6	2,5	2,4	53	74	54	
102 2195 0092 0000 0000	Pads Laata - To		4,9	4,1	5,1	14.0	33,4	40,4	31,3	17,8	9,7	7,2	6Д	5,4	179	2 53	174	
222 0092 0000 0000 0000	Chartaksal - Ka		4,3	4,0	4,1	4,8	5,5	5,6	6,1	4,4	3,5	4,1	1,2	4,4	55	65	54	
233 0300 0000 0000 0000	Ashtam qar M.	-Small Ribe &	0,7	3,4	1,6	6Д	11,3	9,2	3,2	1,5	0,9	1,0	0,9	0,8	40	72	38	
			28,9	28,4	34,3	98 Д	215,9	225,6	173,0	118,2	56,8	42,9	36Д	31,0	1089	1621	1073	7
Leftbank Fergana Valle:																		
102 1907 00 48 0000 0000	Akst - Dazgor		6,2	sд	5,4	5,3	7,5	16,7	24,5	21,0	14,4	10,9	8,5	7.4	133	172	132	1
20 4 0059 0000 0000 0000	Istara - Tas iki		13,1	10,7	9,9	9,9	23,0	58,1	115,3	112,2	52,2	26.4	18,5	14,5	464	577	470	3
211 0038 0000 0000 0000	Akbira - Tileke		22,1	18,8	21,6	32,2	72,0	117,9	133,3	106,8	60,0	39,2	29,7	25,3	679	883	681 29	5
212 0045 0013 0008 0000 212 0045 0026 0000 0000	Sharkol-Shar Karakol-Morti		0,8 5.7	0,6 5.1	0,7 5.5	1,1 6.9	3,9 14.5	7,3 18.8	6,6 12,3	7.1	1,9 5.5	1,2 6,5	1Д 6.4	0,8 6.2	30 101	144	101	
			3,3	2,7	2,9		13,0	25,9	317		11.4		4.7	3.9	134	163	101	1
212 0051 0016 0000 0000 212 0052 0000 0000 0000	Kyroyzata - Kyr Arauansal - Kar		18.4	15.6	16.1	16 D	30.2	45.2	45,4	23,6 33,4	19.2	6,6 18,8	19.5	19.7	255	438	305	
212 0062 0000 0000 0000 213 0039 0000 0000 0000	Arabansai - Kai Istaliam sai - Uo		18,4 33.5	28.4	29.0	16 JJ 28 7	53.7	112.9	143.4	106.0	62.7	18,8	38.3	36.2	2 15 7 15	10 40	706	
214 0052 0000 0000 0000	Stakt mardat		16,7	14.3	15,0	13.6	20,6	40.3	52.5	45,1	28.5	22.7	19.3	16,9	3 0 5	372	303	
215 0044 0000 0000 0000	Soki - Sarvkai		32.0	26.6	27.7	32.6	74.8	191.5	351.4	325 E	159.1	69.9	45.5	37.4	1374	1638	1384	- 1
225 0031 0000 0000 0000	Abstirsal- Uch		2.6	22	2.1	32	6,0	9.5	7.2	4.8	3.7	3.4	3.1	2,8	51	78	50	
228 0045 0000 0000 0000	Khodjabak Irgan		13.7	11.9	12.7	13.6	23.1	45.5	63.3	52.4	29.8	21.0	16.6	15.1	320	394	322	
			10,1	-11,0	148.8	166.9	342.5	20,0	986.9	V4,0	200	273.1	10/0	1001	320	0.04	4617	

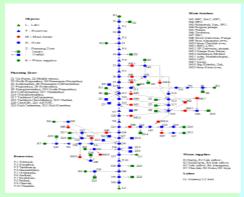
* Including original and restore data

WARMIS Databa Evaluation of the Natural Surface Flow in the Amu Darya River Basin(1914 - 1999)

																	Flow: m	Illion m 3
Code	River	Gauge	- 1	- II	III	IV	V	VI	VII	VIII	IX	Х	XI	XII	Flow	P5%	P 50%	P90%
Afganistan Rivers																		
240 0010 0000 0000 0000	Kirth-Tangkurgan		8,0	9,9	9,4	10,1	11,2	sд	3,5	3,1	3,7	4.7	6,7	7,9	83	161	77	54
240 0020 0000 0000 0000	Bak lab - Rabatala		99,7	158,7	114,4	164,7	287,6	267,1	137,0	103,2	98,2	104,9	102,9	103,2	17 42	3376	16 15	1 12 8
240 0030 0000 0000 0000	Sampil-Sappil		20,0	32,5	26,5	33,7	35,6	21,8	15,7	14,0	15,6	20,6	21,3	21,0	278	5 40	258	12.0
240 0040 0000 0000 0000	Katar - Patabata		9,8	30,4	22,0	32,1	21,7	5,2	3,1	3,0	2,8	5,7	8,2	11,3	155	3 0 3	141	10 1
			137,5	231	17 2,3	240,6	366,1	299,1	159,	123,2	120,3	135,9	139,1	143,4	2258	4381	2091	1464
Average-multiy	ear values flow:		2988	2970	4083	6304	9582	12693	13910	11017	5871	3802	3 158	3130	79509	10 4900	78235	65531

Flow (km3):

P 5% = 51.9


P 50% = 33.47

P 90% = 24.35

www.cawater-info.net

- On-line data
- Анализ

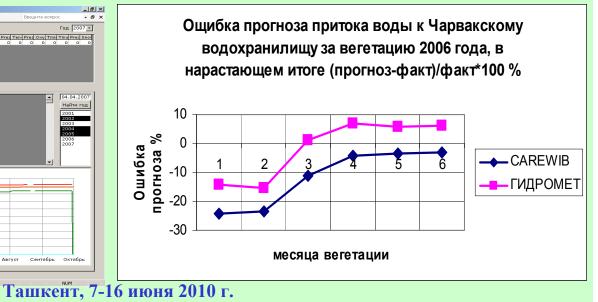
And Total Act of Beautiful Control Section Con

Задачи планирования и оперативного управления, решаемые с помощью аналитических инструментов CAREWIB:

- оценка *располагаемых водных ресурсов* (естественная и антропогенная составляющие, потери воды),
- оценка *зарегулированного стока* (анализ режимов работы водохранилищ и ГЭС),
- составление водных балансов, анализ невязок и дефицитов воды,
- комплексный анализ (по ряду критериев) и выявление резервов снижения потерь и повышения водообеспеченности (экология, орошение, гидроэнергетика).

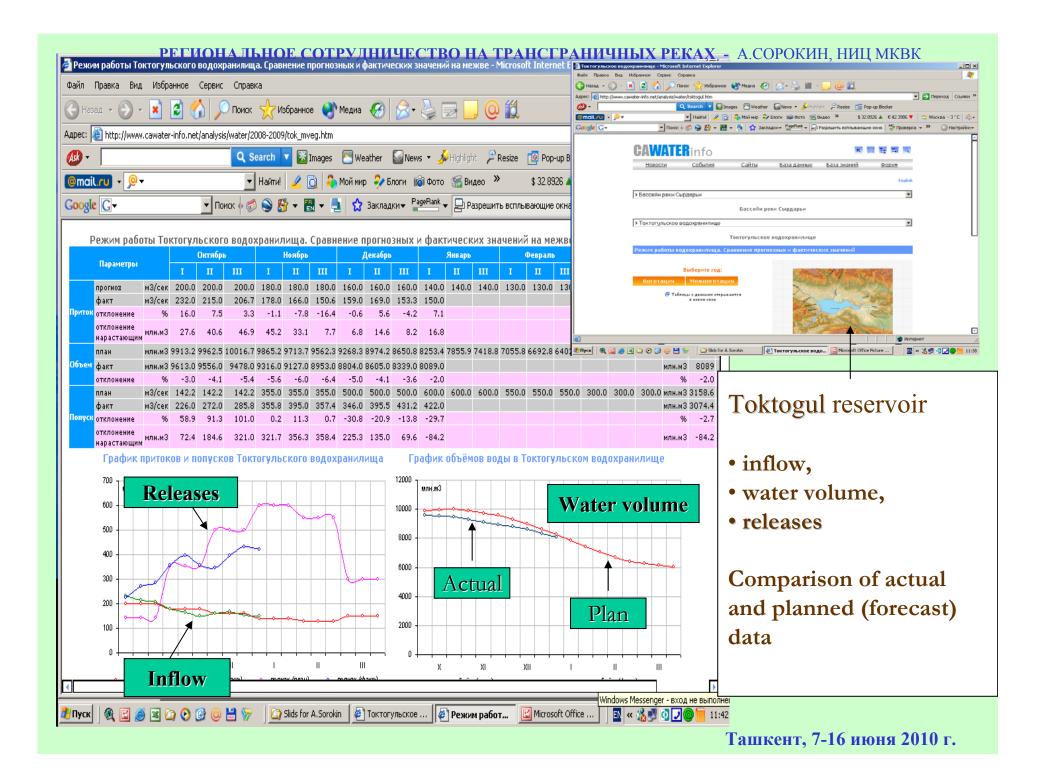
Аналитические документы:

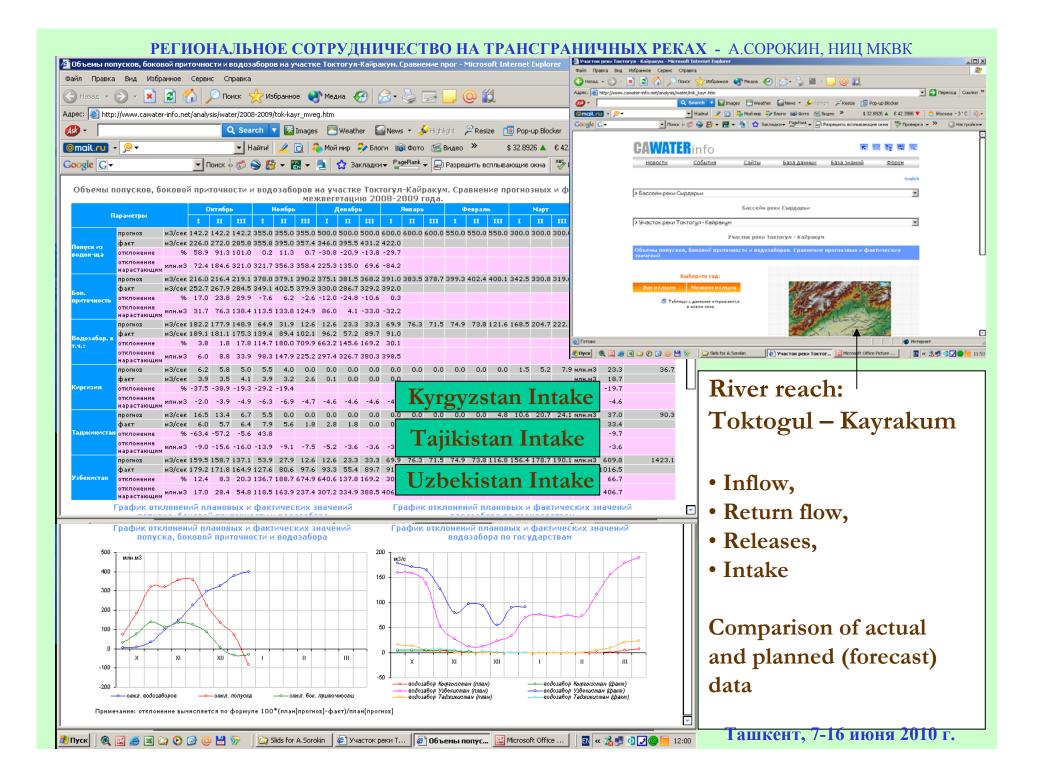
- аналитические окна на портале оперативный анализ (обновление 10 дней) водохозяйственной ситуации,
- *аналитическая записка* анализ водохозяйственной ситуации в бассейне для членов МКВК



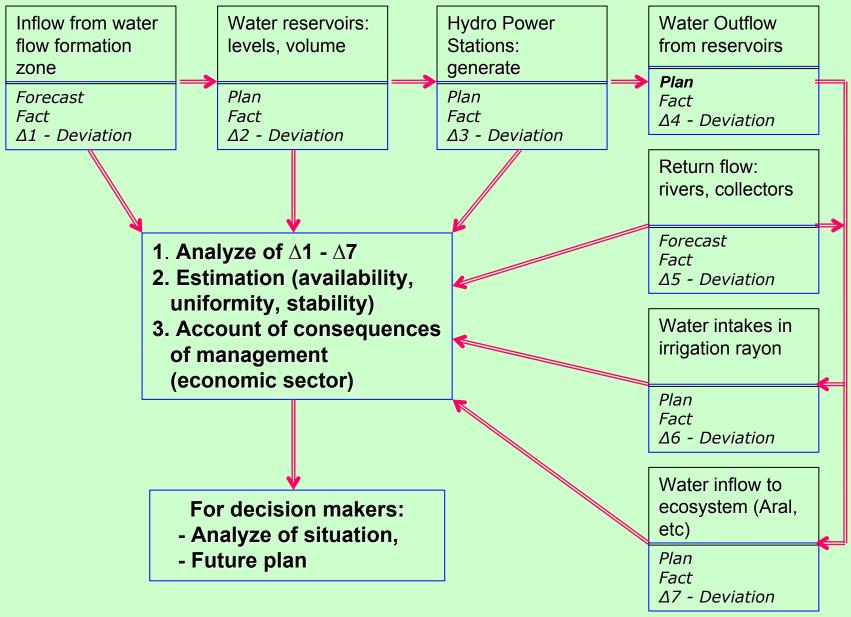
Анализ водности с помощью аналитических инструментов CAREWIB (по аналогам гидрографов стока рек, накопления осадков и хода температур)







Анализ работы водохранилищ и ГЭС


- анализ официальных сведений баланс водохранилищ (приток, попуски, объем и уровень)
- анализ официальных сведений по режиму ГЭС (холостые сбросы, выработка электроэнергии)
- оценка потерь воды, оценка эффективности работы водохранилищ, ГЭС.

Scheme of a complex estimation of water management situation of river basins for realization in analytic tools (CAREWIB)

Раскрытие тем модуля 4.2

Методы и инструменты комплексного анализа и интегрированного управления водными и энергетическими ресурсами трансграничных рек бассейна Аральского моря

Тема 4.2.3 Опыт создания и использования автоматизированных систем контроля за распределением трансграничных водных ресурсов

По данной теме на примере системы SCADA и других примерах необходимо познакомить тренеров с опытом разработки и внедрения автоматизированных системы управления и контроля за распределением водных ресурсов в бассейнах рек ЦА. Особое внимание должно быть уделено опыту автоматизации гидроузлов БВО "Сырдарья" и планов развития системы SCADA в бассейне Амударьи.

SCADA позволяет значительно снизить непроизводительные потери воды за счет улучшения информационного обеспечения и контроля, повышения оперативности и точности управления водными ресурсами

Необходимы рекомендации по повышению эффективности работы существующих постов и средств гидрометрических наблюдений и контроля. Существенное значение имеет развитие метрологического обеспечения — единый методический подход и наличие единых эталонных приборов снижает риск появления разногласий в оценке составляющих ВХБ, включая невязки и потери.

Основные достоинства автоматизированной системы контроля и управления SCADA:

- повышение точности измерения уровней, расходов и минерализации воды, а также открытия затворов гидротехнических сооружений, за счет применения современных технических средств измерения и учета водных ресурсов (снижение погрешности измерения и вычисления по расходу от 5-10% до 2-3%);
- улучшение информационного обеспечения, за счет непрерывного сбора, хранения и обработки измерительных значений уровней и расходов воды в компьютерах;
- повышение оперативности и точности управлении водными ресурсами за счет увеличения скорости получения и обработки информации о технологическом процессе и принятие решения;
- повышение оперативности обнаружения и устранения неисправностей оборудования системы управления и гидротехнических сооружений.

РЕГИОНАЛЬНОЕ СОТРУДНИЧЕСТВО НА ТРАНСГРАНИЧНЫХ РЕКАХ - А.СОРОКИН, НИЦ МКВК

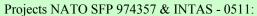
Раскрытие тем модуля 4.2

Методы и инструменты комплексного анализа и интегрированного управления водными и энергетическими ресурсами трансграничных рек бассейна Аральского моря

Тема 4.2.4 Опыт создания и использования интегрированных бассейновых моделей, и их совершенствование на основе развития систем поддержки принятия решений и поиска консенсуса в управлении

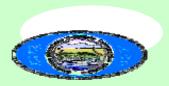
По данной теме на примере Чирчик-Ахангаран-Келесского бассейна (проект **RIVERTWIN**) необходимо познакомить тренеров с **подходами и особенностями построения интегрированной модели** управления водными и энергетическими ресурсами в внутригодовом и многолетнем разрезе, в увязке поверхностных и подземных водных ресурсов, зон формирования и использования стока.

Необходимо также познакомить с архитектурой построения информационно-программного комплекса **ASBmm**


Здесь важно раскрыть возможности модели для решения сложных и противоречивых ирригационно-энергетических задач внутригодового и многолетнего управления (популярная и исследовательская версии).

РЕГИОНАЛЬНОЕ СОТРУДНИЧЕСТВО НА ТРАНСГРАНИЧНЫХ РЕКАХ - А.СОРОКИН, НИЦ МКВК

Steps of development of regional basin models in SIC ISWC as a DSS tool for integrated assessment of water situation


Aral Sea Basin Management Model ASB-mm – UNDP:

- Social-economic base of Globesing model (M.Misarovich)
- Hydrologic model in GAMS
- Interface (Resource Analysis, The Netherlands, SIC ISWC)

Aral Sea Coastal Zone (Priaralye) and Aral Sea

ASBmm

- UNESCO IHE

Institute for Water Education

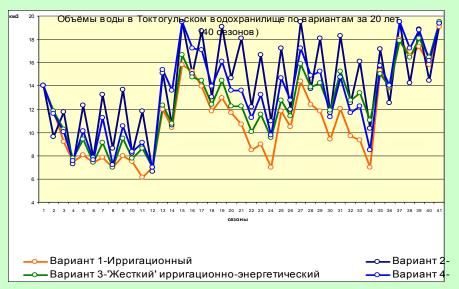
Delft, The Netherlands

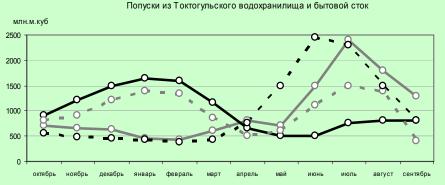
& SIC ISWC, 2009-2011

С помощью абстрактной модели, учитывающей риски и дестабилизирующие факторы, строятся возможные конфликтные ситуации.

Каждое государство для покрытия всех своих потребностей (экология, гидроэнергетика, орошение и др.) стремится получить в свое распоряжение из ОГраниченного трансграничного ресурса необходимое ему количество воды в заданном объеме и режиме.

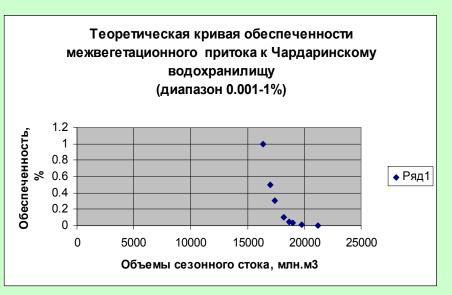
В тоже время, в спектре интересов государств существует некоторая общая составляющая (иначе нет смысла вообще решать конфликтную задачу), которую необходимо найти и эффективно использовать.


Одна из главных причин сохранения напряженной водохозяйственной ситуации в регионе — принятие односторонних, несогласованных решений по управлению водными ресурсами, как в тактических действиях, так и в стратегических планах на будущее.


Решение проблем региона видится в увязке национальных целей и региональных ограничений, в поиске консенсуса между странами, секторами их экономик, водохозяйственными районами, в учете экологических требований, предупреждении возникновения ущербов в социально-напряженных зонах и снижении риска появления экстремальных ситуаций и конфликтов.

Поиск консенсуса предполагает рассмотрение альтернатив и различных вариантов управления, построенных с использованием моделей, с широким выбором критериев управления (целевых функций) и экономических показателей, оценивающих последствия регулирования и использования стока.

РЕГИОНАЛЬНОЕ СОТРУДНИЧЕСТВО НА ТРАНСГРАНИЧНЫХ РЕКАХ - А.СОРОКИН, НИЦ МКВК

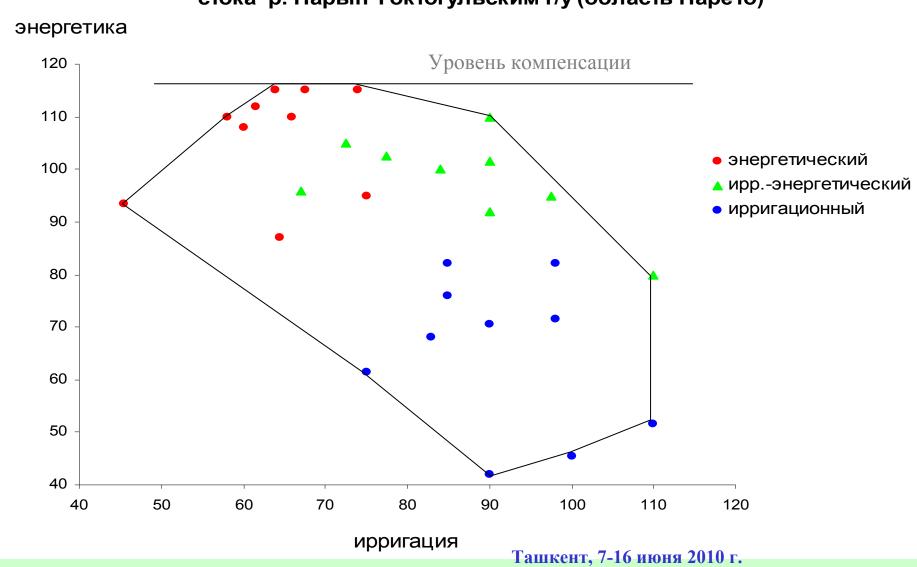

Анализ стратегий многолетнего регулирования стока

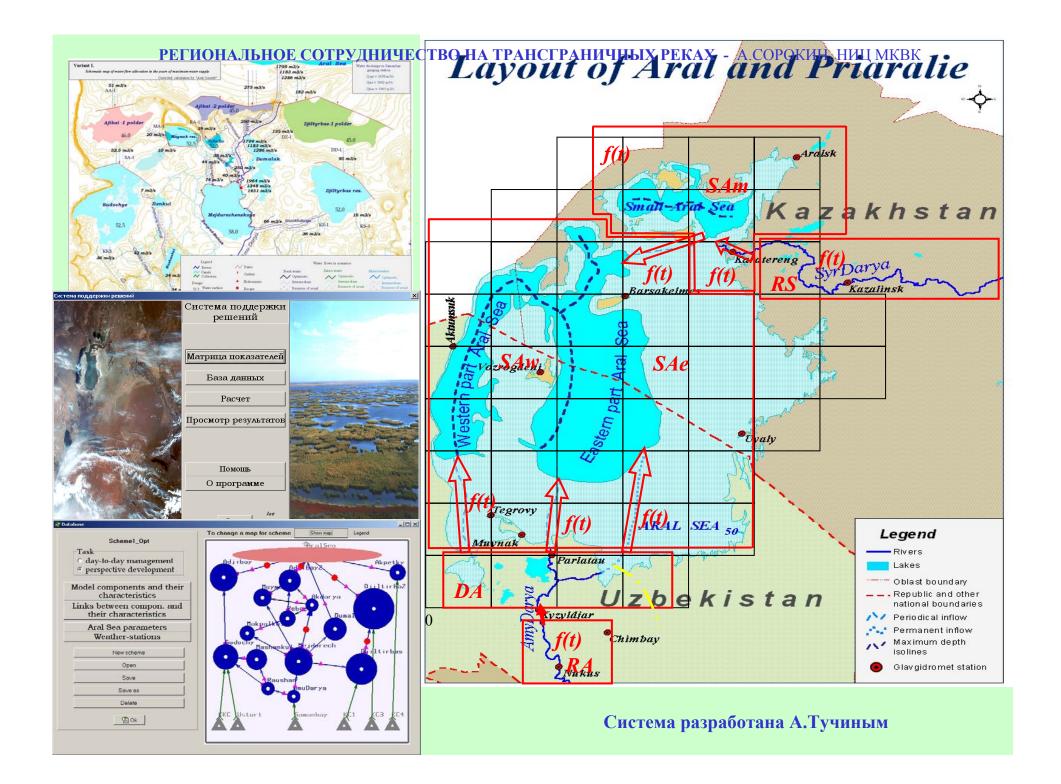
— Ирригационный режим - режим до 1992 г. соот — Энергетический режим - требования энергетин = = 0 = Ирригационно-энергетичексий режим - смодел = = 0 = Приток к Токтогульскому водохранилищу - быт

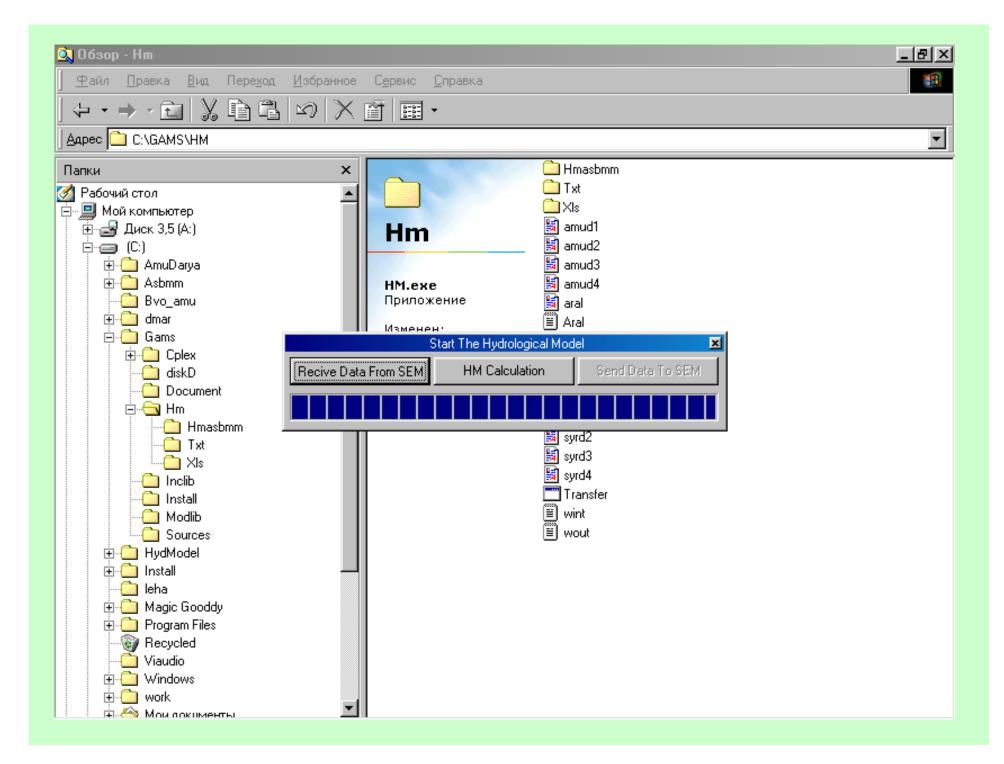
Ташкент, 7-16 июня 2010 г.

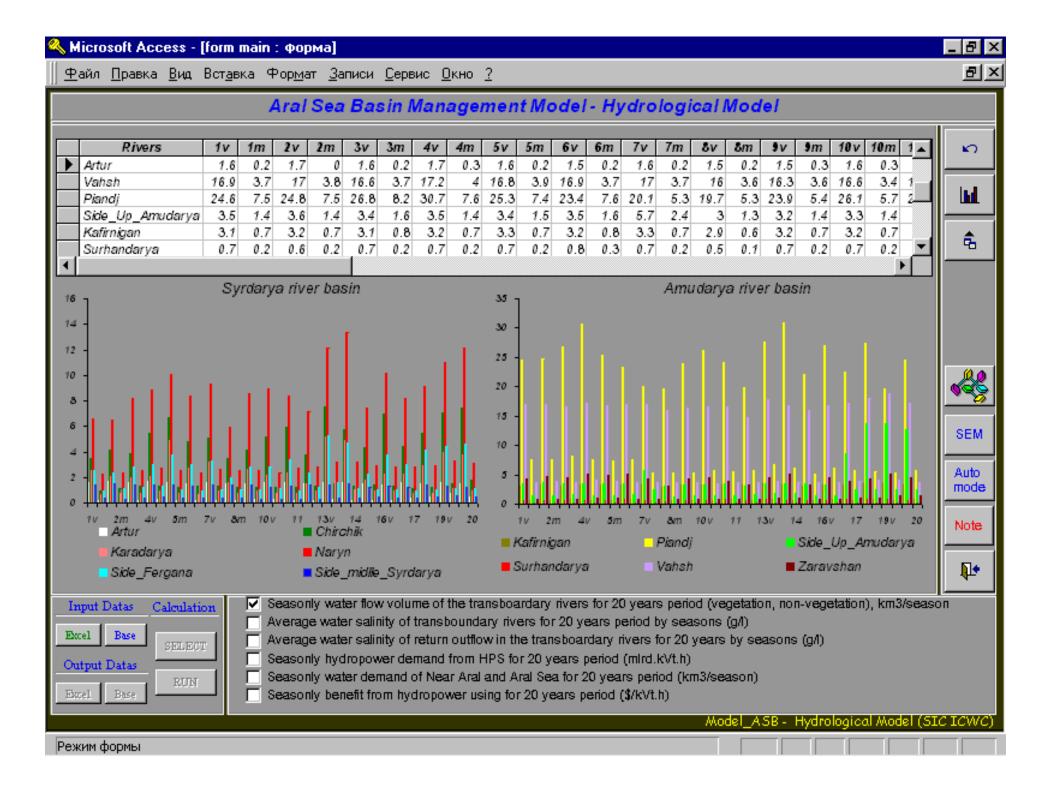
Как можно решить задачу

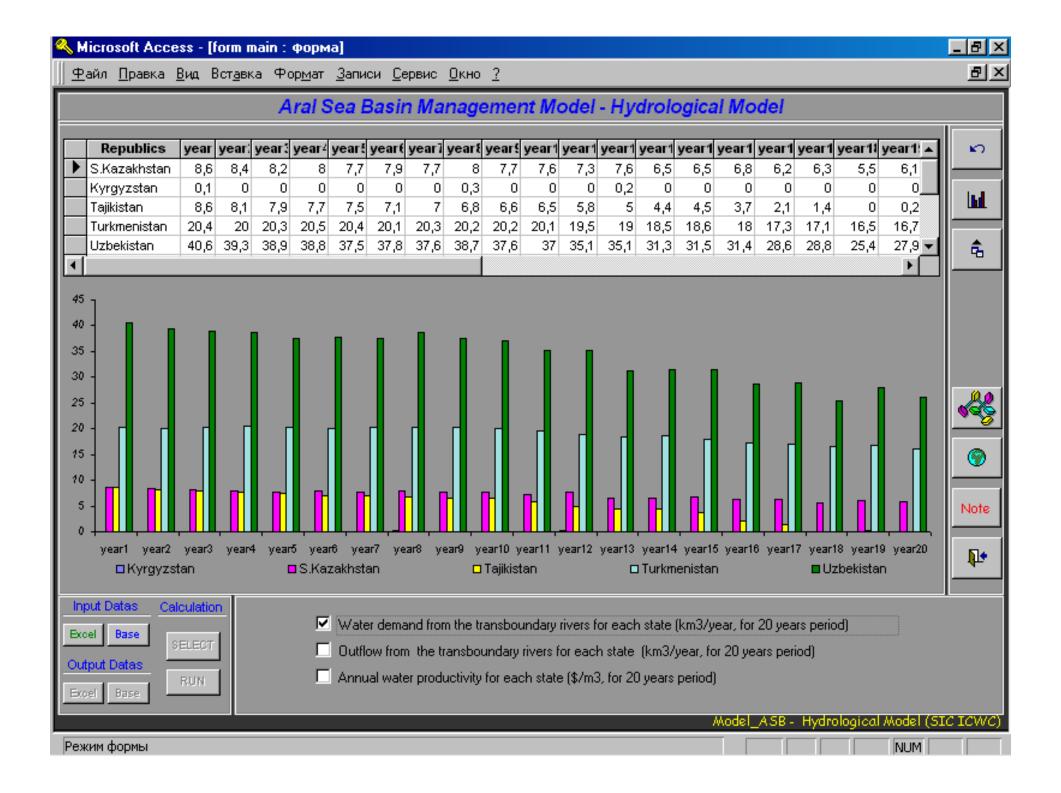
• Сведение целей к одному критерию и ограничениям

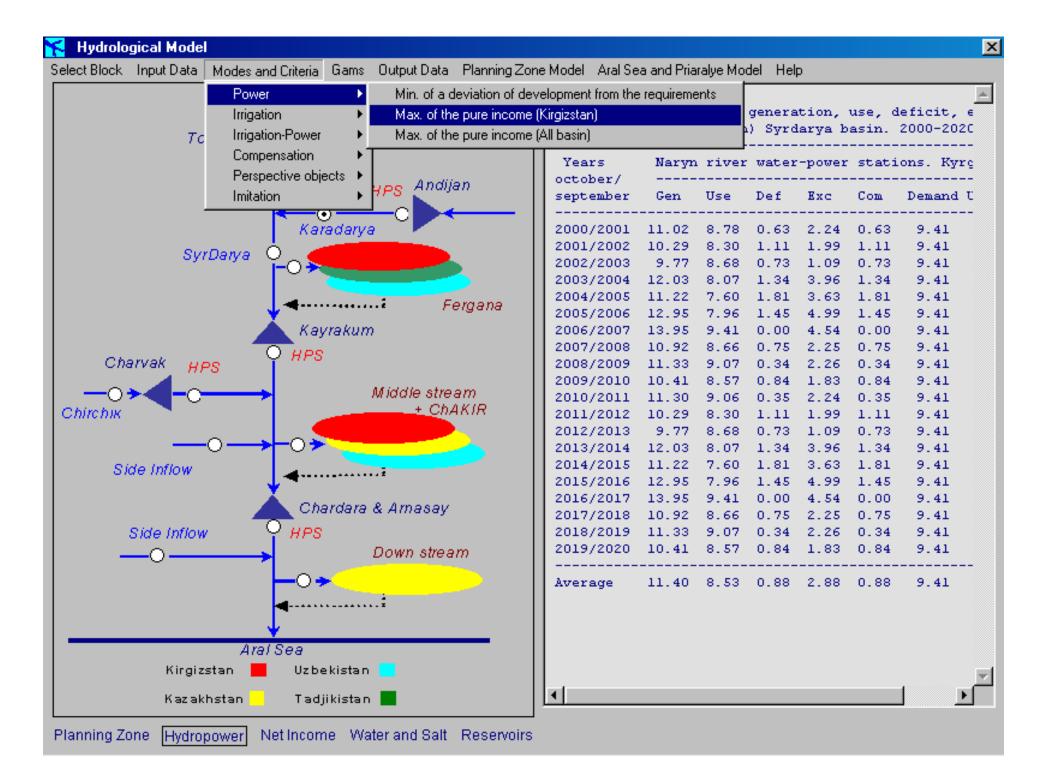

- Объединение экономических показателей последствий регулирования в интегральный критерий (доход затраты ущерб),
- Составление обобщенного показателя эффективности с помощью весовых коэффициентов и экспертных оценок

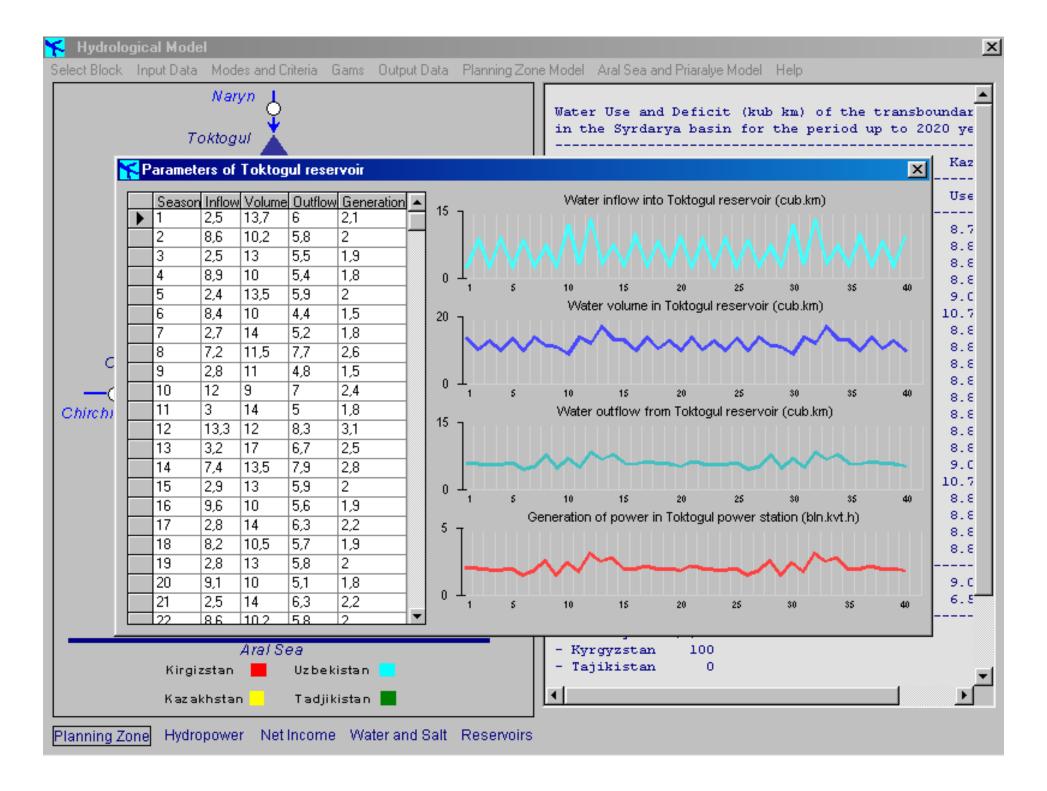

Как можно решить задачу

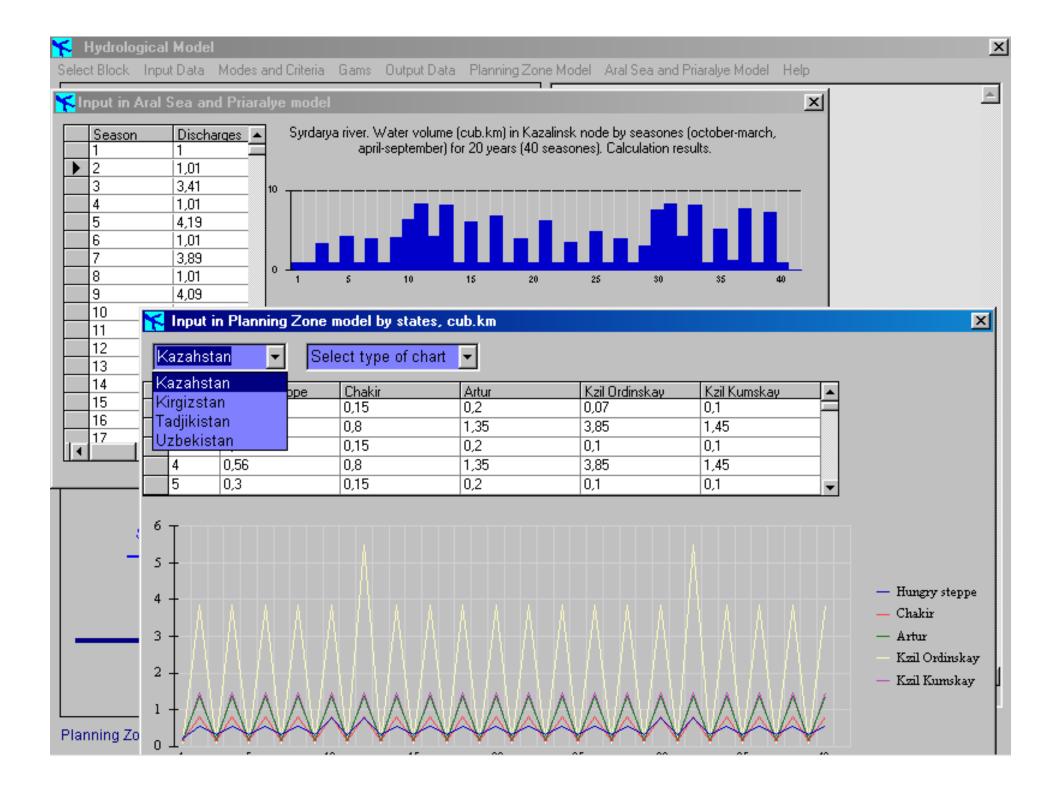

- Метод последовательных уступок
- Определение области эффективных решений (Парето) и нахождение компромисса (принцип Парето, компенсация)

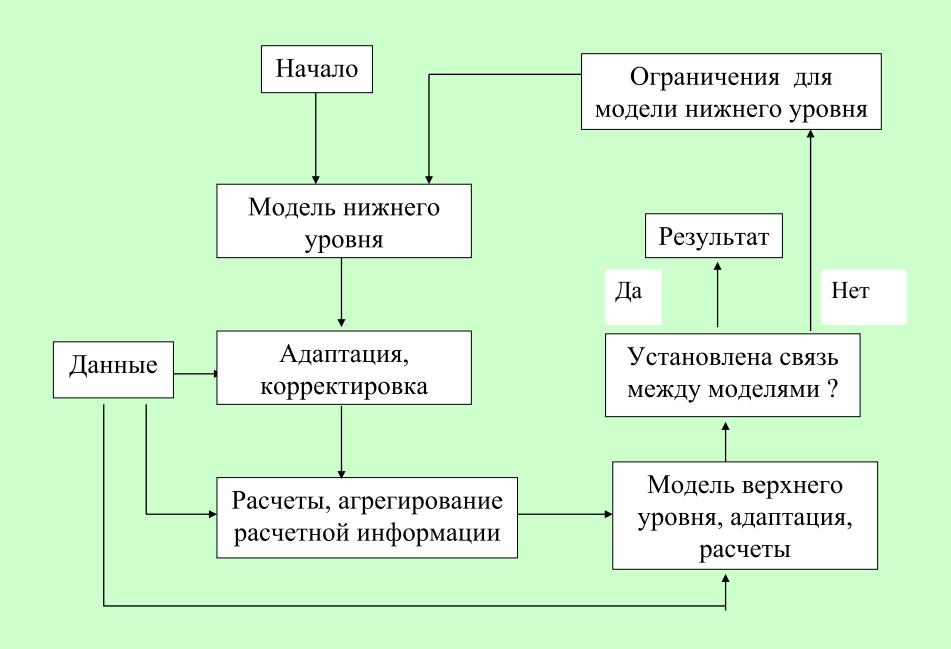

Принцип Парето: любое изменение режима, которое никому не причиняет убытков, а приносит хоть одному водопользователю (водопотребителю) пользу (эффект), является улучшением режима

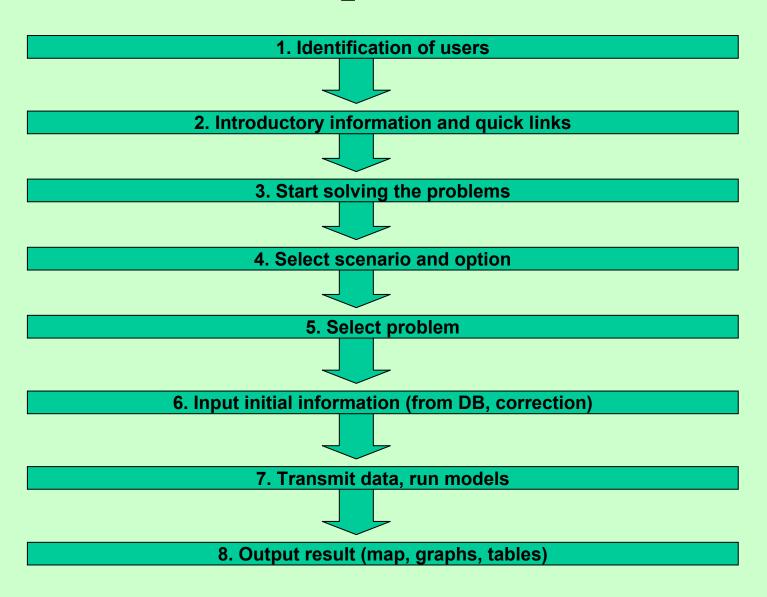

Чистые доходы (млн.\$/год) от использования зарегулированного стока р. Нарын Токтогульским г/у (область Парето)

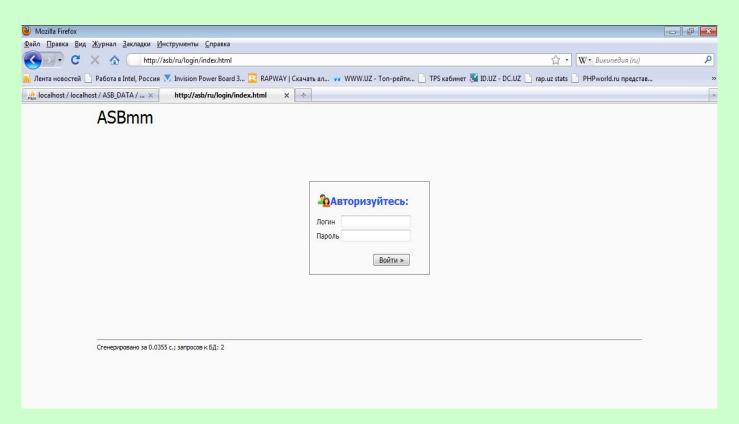




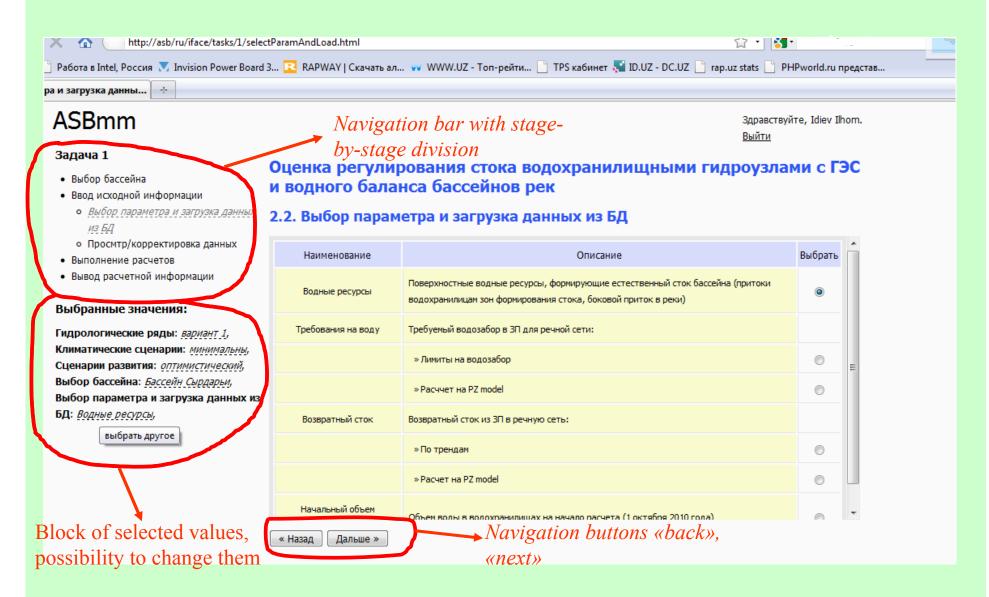








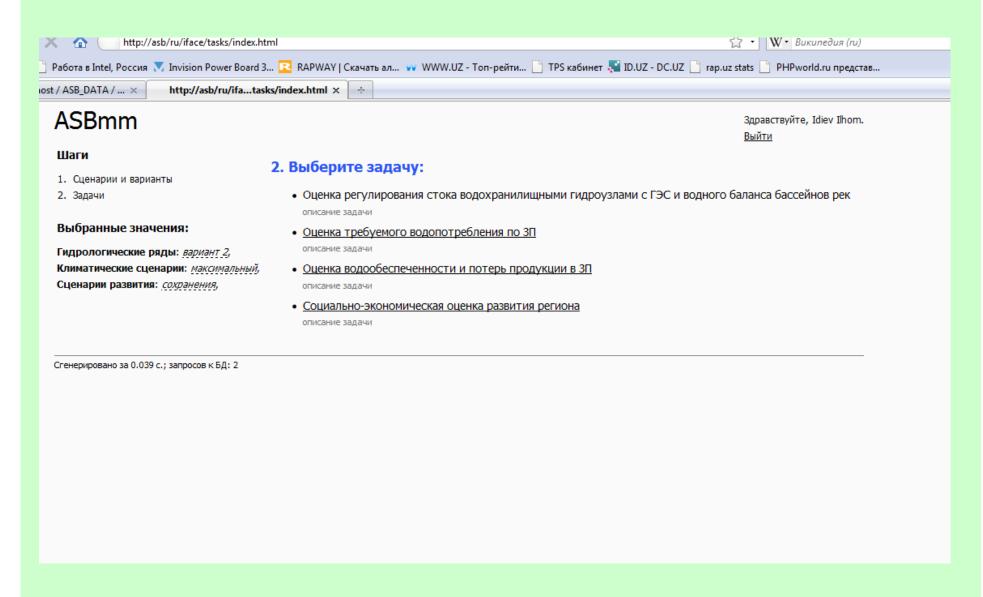
Interface operation scheme

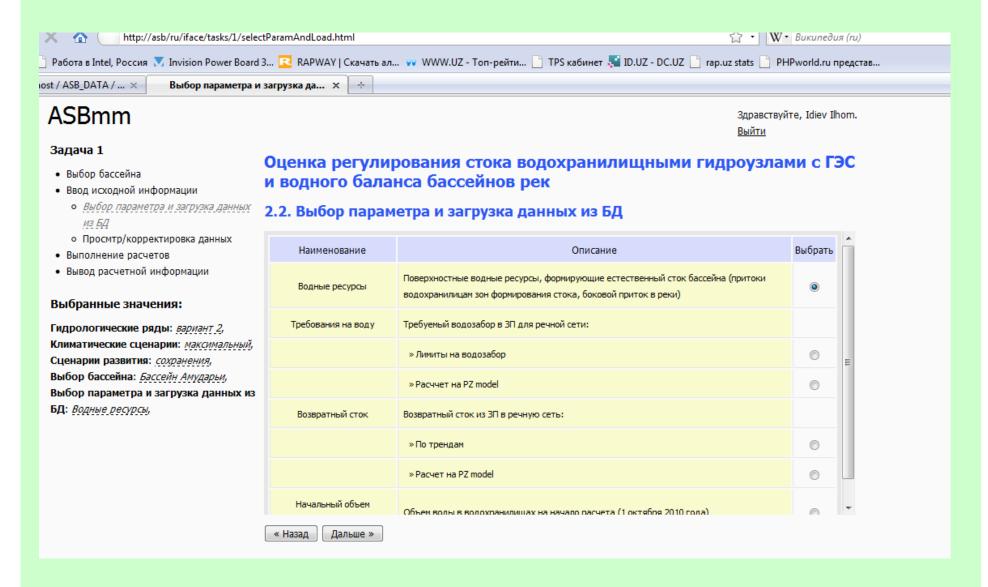


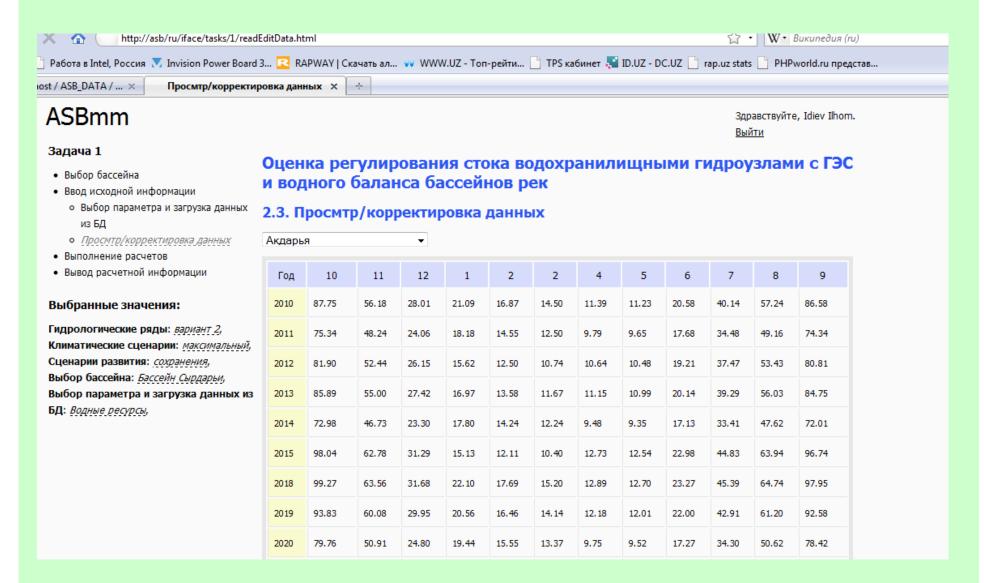
Identification

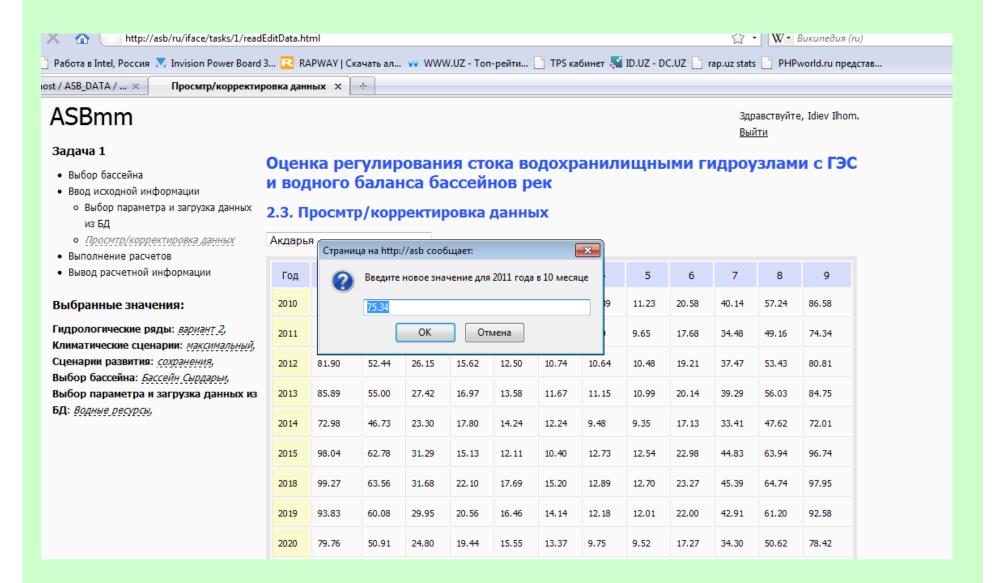


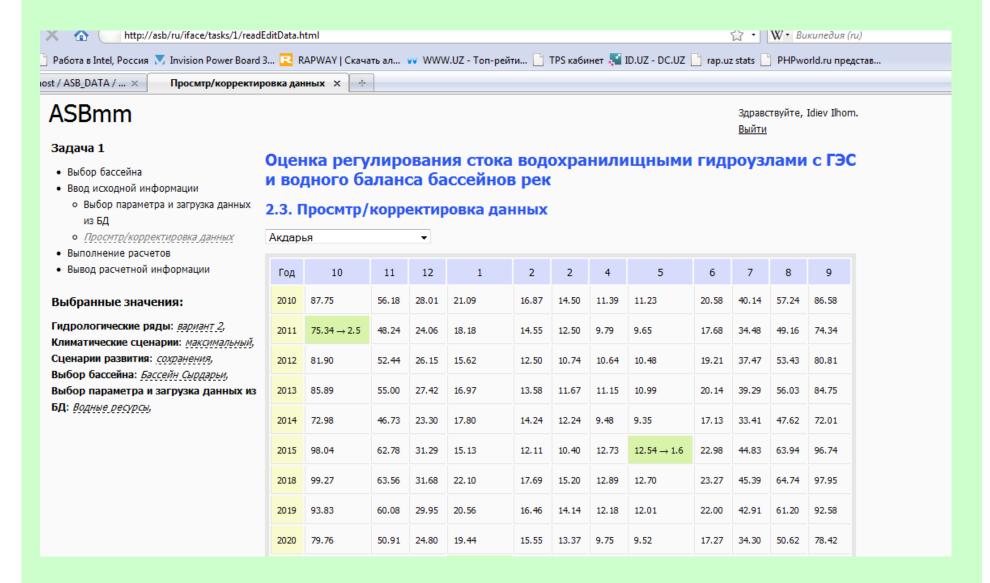
• Identification of users for access to interface

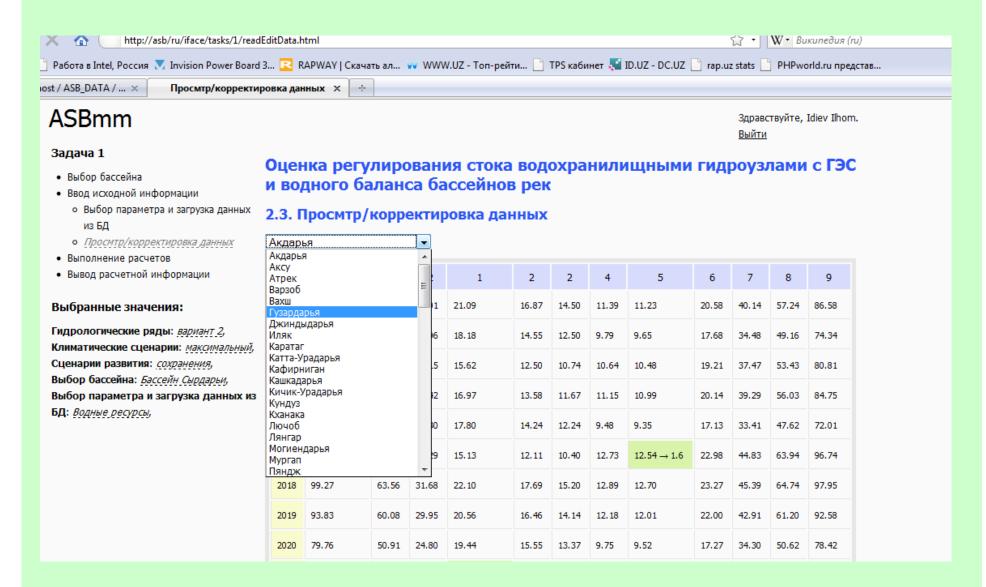

Usability – convenience and ease of use

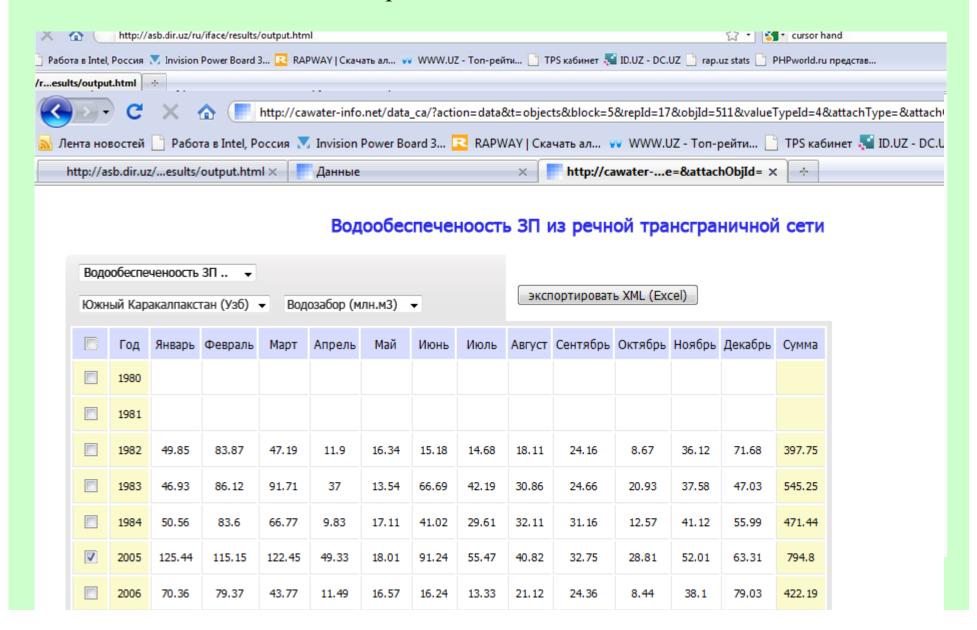

Selection of option and scenario


Selection of task


Selection of basin, parameters


Loading of data from DB


Correction of data


Data saving

Selection of another object

Representation of results

БЛАГОДАРЮ ЗА ВНИМАНИЕ!

Обязательно посетите

www.cawater-info.net

www.icwc-aral.uz