Утверждаю Первый заместитель Председателя Госкомсанэпиднадзора России, заместитель Главного государственного санитарного врача Российской Федерации С.В.СЕМЕНОВ 31 октября 1996 года

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОПРЕДЕЛЕНИЮ КОНЦЕНТРАЦИЙ ХИМИЧЕСКИХ ВЕЩЕСТВ В ВОДЕ ЦЕНТРАЛИЗОВАННОГО ХОЗЯЙСТВЕННО - ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ

СБОРНИК МЕТОДИЧЕСКИХ УКАЗАНИЙ МУК 4.1.646-4.1.660-96

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ГАЗОХРОМАТОГРАФИЧЕСКОМУ ОПРЕДЕЛЕНИЮ ЭТИЛБЕНЗОЛА В ВОДЕ

МУК 4.1.652-96

Дата введения - с момента утверждения

- 1. Подготовлены творческим коллективом специалистов в составе: Малышева А.Г. (руководитель), Зиновьева Н.П., Суворова Ю.Б., Растянников Е.Г., Топорова И.Н., Евстигнеева М.А., при участии Кучеренко А.И. (Госкомсанэпиднадзор России).
- 2. Утверждены и введены в действие первым заместителем председателя Госкомсанэпиднадзора России заместителем главного государственного санитарного врача Российской Федерации С.В. Семеновым 31 октября 1996 года.
 - 3. Введены впервые.

Область применения

Методические указания по определению концентраций химических веществ в воде предназначены для использования органами государственного санитарно - эпидемиологического надзора при осуществлении государственного контроля за соблюдением требований к качеству воды централизованного хозяйственно - питьевого водоснабжения, водохозяйственными организациями, производственными лабораториями предприятий, контролирующими состояние водных объектов, а также научно - исследовательскими институтами, работающими в области гигиены водных объектов.

Включенные в сборник методические указания разработаны в соответствии с требованиями ГОСТа 8.010-90 Методики выполнения измерений, ГОСТа 17.00.02-79 "Охрана природы. Метрологическое обеспечение контроля загрязненности атмосферы, поверхностных вод и почвы. Основные положения". В сборнике приведены методики по измерению концентраций 40 химических веществ.

Методики выполнены с использованием современных физико - химических методов исследования газовой хроматографии с различного вида детектированием, метрологически аттестованы и дают возможность контролировать содержание химических веществ на уровне и меньше их предельно допустимых концентраций в воде, установленных в СанПиН 2.1.4.559-96 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества", а для веществ, не включенных в перечень нового документа, - в действующих Санитарных правилах и нормах охраны поверхностных вод от загрязнения.

Методические указания одобрены и приняты на совместном заседании группы главного эксперта Комиссии по санитарно - гигиеническому нормированию "Лабораторно - инструментальное дело и метрологическое обеспечение" Госкомсанэпиднадзора России и бюро секции по физико - химическим методам исследования объектов окружающей среды Проблемной комиссии "Научные основы экологии человека и гигиены окружающей среды".

Настоящие методические указания устанавливают газохроматографическую методику количественного химического анализа воды централизованного хозяйственно - питьевого водоснабжения для определения в ней содержания этилбензола в диапазоне концентраций 0,005 - 0,5 мг/куб. дм.

C₆H₅CH₂CH₃ мол. масса 106,17

Этилбензол - бесцветная жидкость, температура кипения - $136,2^{\circ}$ С, температура плавления - 95° С, ограничено растворим в воде, хорошо растворим в этиловом спирте и эфире, плотность - 0,86 г/куб. см.

Этилбензол обладает раздражающим действием, относится к 4 классу опасности. ПДК для хозяйственно - питьевого и культурно - бытового водопользования - 0,01 мг/куб. дм (мг/л).

1. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью, не превышающей +/- 17%, при доверительной вероятности 0,95.

2. Метод измерений

Измерения концентрации этилбензола выполняют методом газожидкостной хроматографии с пламенно - ионизационным детектированием.

Концентрирование этилбензола из воды осуществляют методом газовой экстракции с последующим анализом равновесной фазы.

Нижний предел измерений в анализируемом объеме пробы 0,005 мг/куб. дм. Определению не мешают стирол, алкилбензин, дивинилбензол в количестве до 10 ПДК их содержания в воде.

3. Средства измерений, вспомогательные устройства, материалы, реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы, реактивы.

3.1. Средства измерений

Хроматограф с пламенно - ионизационным детектором	
Барометр - анероид М-67	ТУ 2504-1797-75
Весы аналитические лабораторные ВЛА-200	ΓΟCT 24104-80E
Линейка масштабная	ГОСТ 17435-72
Лупа измерительная	ГОСТ 8309-75
Меры массы Г-2-210б 2 кл.	ГОСТ 7328-82Е
Микрошприц МШ-10М	ГОСТ 8043-74
Посуда стеклянная лабораторная	ГОСТ 1770-74Е и
	20292-74E
Секундомер, 2 кл. Точности с погрешностью +/- 0,1, СДС пр. 1-2-000	ГОСТ 5072-79
Термометр лабораторный шкальный ТЛ-2; пределы 0 - 55° C, цена	ΓΟCT 215-73E
деления 1° C	
Шприц медицинский 2 куб. см.	ТУ 64-1-3776-83

3.2. Вспомогательные устройства

Хроматографическая колонка из нержавеющей стали длиной 3	м и
внутренним диаметром 3 мм	
Вакуумный компрессор марки ОВН-461 М	
Дистиллятор	ТУ 61-1-721-79
Редуктор водородный	ТУ 26-05-463-76

ТУ 26-05-235-70 ТУ 64-1-14 11-72

Флаконы для медицинский препаратов из стекла HC-1 емкостью 40 куб. см с резиновыми прокладками и навинчивающимися крышками. В крышке высверлено отверстие диаметром 2,0 мм

3.3. Материалы

Азот сжатый	ГОСТ 9293-74
Воздух сжатый	ГОСТ 11882-73
Водород сжатый	ГОСТ 3022-89
Стекловата или стекловолокно	

3.4. Реактивы

Апиезон L-15% на хроматоне N-AW HMDS зернением 0,125 - 0,160 мм, готовая насадка для хроматографической колонки (производство "Chemapol" Чехия)

Ацетон, х.ч.	ГОСТ 2603-79
Вода дистиллированная	ГОСТ 6709-72
Спирт этиловый, х.ч.	ГОСТ 18300-72
Этилбензол, х.ч.	ТУ 6-09-3375-78

4. Требования безопасности

- 4.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТу 12.1.005-88.
- 4.2. При выполнении измерений с использованием газового хроматографа соблюдают правила электробезопасности в соответствии с ГОСТом 12.1.019-79 и инструкцией по эксплуатации прибора.
 - 4.3. При отборе проб разогретым шприцем надевают на руки хлопчатобумажные перчатки.

5. Требования к квалификации операторов

К выполнению измерений допускают лиц, имеющих квалификацию не ниже инженера - химика, с опытом работы на газовом хроматографе.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- 6.1. Процессы приготовления растворов и подготовки проб к анализу проводят в нормальных условиях согласно ГОСТу 15150-89 при температуре воздуха 20 +/- 10° C, атмосферном давлении 630 800 мм рт. ст. и влажности воздуха не более 80%.
- 6.2. Выполнение измерений на газовом хроматографе производят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Перед выполнением измерений проводят следующие работы: приготовление растворов, подготовка хроматографической колонки, установление градуировочной характеристики, отбор проб.

7.1. Приготовление растворов

Исходный раствор этилбензола для градуировки (c = = 1000 мг/куб. дм). 100,0 мг этилбензола вносят в мерную колбу вместимостью 0,1 куб. дм, доводят до метки дистиллированной водой и тщательно перемешивают. Срок хранения - 10 дней.

Рабочий стандартный раствор для градуировки (c = 1,0 мг/куб. дм). 1,0 куб. см исходного раствора помещают в мерную колбу вместимостью 1,0 куб. дм, доводят объем до метки дистиллированной водой и тщательно перемешивают. Готовят перед употреблением.

7.2. Подготовка хроматографической колонки

Стальную хроматографическую колонку, промытую растворителями (ацетоном, этиловым спиртом), высушенную в токе инертного газа, заполняют с помощью вакуум - насоса готовой насадкой и закрепляют в термостате хроматографа, не присоединяя к детектору. Продувают газом - носителем с расходом 50 куб. см/мин., постепенно повышая температуру термостата колонок от 80 до 250° С со скоростью 1 град./мин. При температуре 250° С колонку выдерживают 4 часа. После охлаждения колонку подключают к детектору, записывают нулевую линию в рабочем режиме. При отсутствии дрейфа нулевой линии колонка готова к работе.

7.3. Установление градуировочной характеристики

Градуировочную характеристику устанавливают методом абсолютной градуировки по 6 сериям градуировочных растворов этилбензола, каждая из которых состоит из 6 растворов. В мерные колбы вместимостью 100 куб. см вносят исходные растворы для градуировки в соответствии с табл. 1 и доводят объем до метки дистиллированной водой. Растворы тщательно перемешивают. Готовят в день проведения измерений.

Таблица 1

РАСТВОРЫ ДЛЯ УСТАНОВЛЕНИЯ ГРАДУИРОВОЧНОЙ ХАРАКТЕРИСТИКИ ПРИ ОПРЕДЕЛЕНИИ КОНЦЕНТРАЦИИ ЭТИЛБЕНЗОЛА

Номер раствора	1	2	3	4	5	6
Объем рабочего p-pa ($c = 0,1$ мг/куб. дм),	0,5	2,5	5,0	10,0	30,0	50,0
куб. см						
Концентрация этилбензола, мг/куб. дм	0,005	0,025	0,05	0,1	0,3	0,5

В стеклянные флаконы вместимостью 40 куб. см вносят по 20 куб. см градуировочных растворов, полученных согласно табл. 1, закрывают резиновыми прокладками с навинчивающимися крышками, устанавливают в термостат, нагретый до 90° С и выдерживают 30 мин. Затем нагретым шприцем отбирают 3,0 куб. см паровой фазы и вводят в колонку хроматографа через испаритель.

Анализ проводят в следующих условиях:

150° C
180° C
50 куб. см/мин.
40 куб. см/мин.
400 куб. см/мин.
1:5

 Чувствительность шкалы электрометра
 1 : 5

 Скорость движения диаграммной ленты
 0,5 см/мин.

 Время удерживания этилбензола
 3 мин. 15 сек.

На полученной хроматограмме рассчитывают площади пиков этилбензола и по средним результатам из 6 серий строят градуировочную характеристику, выражающую зависимость площади пика (кв. мм) от концентрации (мг/куб. дм) этилбензола.

7.4. Отбор проб

Отбор проб воды проводят в соответствии с ГОСТом 2874-82, 4979-49, 17.1.5.04-81. Анализируют в день отбора.

8. Выполнение измерений

20 куб. см пробы вносят во флакон, закрывают резиновой прокладкой с навинчивающейся крышкой. Пробу ставят в термостат, нагревают до 90° С и выдерживают в течение 30 минут. Затем нагретым шприцем отбирают 3,0 куб. см паровой фазы и вводят в испаритель хроматографа для разделения в условиях анализа градуировочных растворов. На хроматограмме измеряют площадь пика этилбензола по средним результатам из 3 измерений пробы.

9. Вычисление результатов измерений

Концентрацию этилбензола в воде (мг/куб. дм) определяют по градуировочной характеристике.

Методические указания разработаны И.Н. Топоровой (НИИ экологии человека и гигиены окружающей среды имени А.Н. Сысина, г. Москва).