

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ КАЗАХСТАН

ВОДА ПИТЬЕВАЯ Метод определения содержания бора

СТ РК ГОСТ Р 51210-2003

Издание официальное

Комитет по стандартизации, метрологии и сертификации Министерства индустрии и торговли Республики Казахстан (Госстандарт)

Астана

Предисловией

- 1 РАЗРАБОТАН И ВНЕСЕН Республиканским государственным предприятием "Казахстанский институт стандартизации и сертификации"
- **2** УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ приказом Комитета по стандартизации, метрологии и сертификации Министерства индустрии и торговли Республики Казахстан от 07 ноября 2003 г. № 380
- 3 Настоящий стандарт представляет собой аутентичный текст ГОСТ Р 51210-98 с дополнительными требованиями, отражающими потребности экономики Республики Казахстан, которые выделены в тексте курсивом.
 - 4 СРОК ПЕРВОЙ ПРОВЕРКИ ПЕРИОДИЧНОСТЬПРОВЕРКИ

2009 год 5 лет

5 ВВЕДЕН ВПЕРВЫЕ

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Комитета по стандартизации, метрологии и сертификации Министерства индустрии и торговли Республики Казахстан

Содержание

l Область применения	1
2 Нормативные ссылки	1
В Средства измерения, вспомогательное оборудование, реактивы	2
4 Отбор проб	3
5 Порядок подготовки к проведению определения	3
6 Порядок проведения определения	6
7 Правила обработки результатов определения	6
В Допустимая погрешность определения	6
Э Правила оформления результатов	7
Приложение А Подготовка химической посуды для выполнения	
определений	8
Приложение Б Правила проведения контроля точности	9

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ КАЗАХСТАН

ВОДА ПИТЬЕВАЯ Метод определения содержания бора

Дата введения 2005.01.01

1 Область применения

Настоящий стандарт распространяется на питьевую воду и воду источников хозяйственно-питьевого водоснабжения и устанавливает метод определения содержания бора (ионов бората) флуориметрией в диапазоне измеряемых концентраций от 0,05 до 5,0 мг/дм³.

Метод основан на взаимодействии ионов бората с хромотроповой кислотой в присутствии трилона Б (маскирующего ионы металлов) с образованием флуоресцирующего комплекса и последующим измерением интенсивности его флуоресценции. Присутствие в воде до $1~\rm r/дm^3$ аммония, щелочных, щелочноземельных элементов, магния, алюминия, до $100~\rm mr/дm^3$ фосфата, до $10~\rm mr/дm^3$ фторида, цинка, свинца, меди, железа не оказывает влияния на результат определения.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 1770—74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия.

ГОСТ 4328—77 Натрия гидроокись. Технические условия.

ГОСТ 6709—72 Вода дистиллированная. Технические условия.

ГОСТ 7328—82 Меры массы общего назначения и образцовые. Технические условия

ГОСТ 8.315-97 ГСИ. Стандартные образцы состава веществ и свойств и материалов. Основные положения

ГОСТ 10652—73 Соль динатриевая этилендиамин-N, N, N', N' - тетрауксусной кислоты, 2-водная (трилон Б)

Издание официальное

ГОСТ 14919—83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия

ГОСТ 24104—88 Весы лабораторные общего назначения и образцовые. Общие технические условия

СТРК ГОСТР 51593-2000 Вода питьевая. Отбор проб

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29169—91 (ИСО 384—70) Посуда лабораторная стеклянная. Пипетки с одной отметкой

ГОСТ 29227—91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

3 Средства измерения, вспомогательное оборудование, реактивы

Анализатор жидкости флуоресцентный, позволяющий регистрировать флуоресценцию в области спектра 350—375 нм при возбуждении в области 310—325 нм.

Государственный стандартный образец состава раствора бора, 1 $_{\rm M\Gamma/cm^3}.$

Весы лабораторные общего назначения, 2-го класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104.

Примечание — ΓCO должны быть утверждены или допущены к применению в PK по ΓOCT 8.315.

Меры массы по ГОСТ 7328.

Колбы мерные вместимостью 25, 50, 100, 200 и 500 см³ 2-го класса точности по ГОСТ 1770.

Пипетки с одной отметкой 2-го класса точности вместимостью 5,10 и $20\,\mathrm{cm}^3$ исполнения 2 по $\Gamma\mathrm{OCT}$ 29169.

Пипетки градуированные 2-го класса точности вместимостью 1, 2, 5 и $10~{\rm cm}^3$ по ГОСТ 29227.

Стаканы химические вместимостью 100, 250, 500 и 1000 см³ по ГОСТ 25336.

Воронки лабораторные типа В-36 или В-75 по ГОСТ 25336.

Колбы плоскодонные вместимостью 500 см 3 типа Π -1 по Γ OCT 25336.

Фильтры обезволенные «синяя лента».

Плитка электрическая с закрытой спиралью по ГОСТ 14919.

Вода дистиллированная по ГОСТ 6709.

Натрия гидроокись по ГОСТ 4328. х. ч.

Трилон Б (этилендиамин N,N,N',N'-Тетрауксусной кислоты динатриевая соль) по Γ OCT 10652, ч. д. а.

Динатриевая соль хромотроповой кислоты, 2-водная.

Примечание — Подготовку посуды проводят в соответствии с приложением A.

4 Отбор проб

Пробы питьевой воды отбирают по СТРК ГОСТ Р 51593.

Пробу воды объемом не менее 100 см³ отбирают в емкость из полиэтилена.

Определение бора в пробах воды проводят в течение трех суток с момента отбора.

5 Порядок подготовки к проведению определения

5.1~ Приготовление раствора динатриевой соли хромотроповой кислоты молярной концентрации $0{,}0025~$ моль/дм $^3~$

Для приготовления раствора помешают 54,6 мг динатриевой соли хромотроповой кислоты в мерную колбу вместимостью 50 см³, растворяют в небольшом количестве дистиллированной воды и затем разбавляют водой до метки.

Раствор пригоден для использования в течение 1 мес при хранении в емкости из стекла, не содержащего бора, или полиэтилена в темноте в нормальных климатических условиях.

5.2 Приготовление смешанного реагента

Для приготовления раствора в колбу помещают 5,6 г трилона Б, растворяют в 50 см³, горячей дистиллированной воды и, после охлаждения, переносят в мерную колбу вместимостью 100 см³, добавляют 10 см³ раствора динатриевой соли хромотроповой кислоты по 5.1 и доводят до метки дистиллированной водой. Раствор готовят непосредственно перед использованием.

5.3 Приготовление раствора гидроокиси натрия с молярной концентрацией 0,1 моль/дм 3

Для приготовления раствора помещают в мерную колбу вместимостью $1000~{\rm cm}^3~200$ — $300~{\rm cm}^3$ дистиллированной воды, растворяют

CT PK FOCT P 51210-2003

в ней 4 г гидроокиси натрия и доводят дистиллированной водой до метки. Раствор пригоден для использования в течение 2 мес. при хранении в емкости из полиэтилена в нормальных климатических условиях.

- 5.4 Приготовление раствора бора
- 5.4.1 Приготовление раствора бора массовой концентрации 100 мг/дм 3

Для приготовления раствора в мерную колбу вместимостью 50 см 3 помещают 5 см 3 ГСО состава раствора бора массовой концентрации 1 мг/см 3 и доводят до метки дистиллированной водой. Раствор пригоден для использования в течении 3 месяцев при хранении в емкости из фторопласта или полиэтилена в нормальных климатических условиях.

5.4.2 Приготовление раствора бора массовой концентрации 5 $_{\mbox{\scriptsize MT}/\mbox{\scriptsize ZM}^3}$

Для приготовления раствора в мерную колбу вместимостью 100 см³ помещают 5 см³ раствора бора концентрации 100 мг/дм³ по 5.4.1 и доводят дистиллированной водой до метки. Раствор пригоден для использования в течение одной недели при хранении в емкости из полиэтилена в нормальных климатических условиях.

- 5.5 Приготовление растворов ионов бората
- $5.5.1~\Pi$ риготовление раствора ионов бората массовой концентрации $200~\mathrm{mr/дm^3}$

Для приготовления раствора в мерную колбу вместимостью 25 см³ помещают 5 см³ ГСО состава раствора ионов бората массовой концентрации 1 мг/см^3 и доводят до метки дистиллированной водой. Концентрация бора в данном растворе составляет 36,7 мг/дм³.

Раствор пригоден для использования в течение двух недель, при хранении в емкости из полиэтилена в нормальных климатических условиях.

5.5.2 Приготовление раствора ионов бората массовой концентрации $20~{\rm Mr/дm}^3$

Для приготовления раствора в мерную колбу вместимостью $50 \, \mathrm{cm^3}$ помещают $5 \, \mathrm{cm^3}$ раствора бората концентрации $200 \, \mathrm{mr/дm^3}$ по $5.5.1 \, \mathrm{u}$ доводят дистиллированной водой до метки. Концентрация бора в данном растворе составляет $3,67 \, \mathrm{mr/дm^3}$.

Раствор пригоден для использования в течение одной недели при хранении в емкости из полиэтилена в нормальных климатических условиях.

- 5.6 Подготовка анализатора к измерениям и его градуировка
- 5.6.1 Подготовка прибора к работе проводится в соответствии с инструкцией изготовителя. Возбуждение флуоресценции проводится в интервале длин волн 310—325 нм, регистрация флуоресценции в интервале 350—375 нм.
- 5.6.2 Градуировку анализатора осуществляют измерением интенсивности флуоресценции градуировочного раствора и холостой пробы.
- 5.6.3 Для приготовления градуировочного раствора в мерную колбу вместимостью $25~{\rm cm}^3$ помещают $5~{\rm cm}^3$ раствора бора по 5.4.2 массовой концентрации $5~{\rm mr/дm}^3$ или раствора ионов бората массовой концентрации $20~{\rm mr/дm}^3$ по 5.5.2, добавляют $5~{\rm cm}^3$ смещанного реагента по 5.2. Содержимое колбы доводят до метки раствором гидроокиси натрия по 5.3, перемешивают и сразу же измеряют интенсивность флуоресценции $I_{\rm rp.}$
- 5.6.4 Для приготовления холостой пробы в мерную колбу вместимостью 25 см³ помещают 5 см³ дистиллированной воды, добавляют 5 см³ смешанного реагента по 5.2. Содержимое колбы доводят до метки раствором гидроокиси натрия по 5.3, перемешивают и сразу же измеряют интенсивность флуоресценции I_0 .
- 5.6.5 При использовании анализатора, предусматривающего автоматическую градуировку настройку режима «Фон» проводят при помощи холостой пробы по 5.6.4; для настройки режима «Калибровка» используют градуировочный раствор по 5.6.3.
- 5.6.6 Для получения результатов определения бора в «ручном режиме», вычисляют градуировочный коэффициент f по формуле

$$f = \frac{C\tilde{a}\delta}{I\tilde{a}\delta - I_0}$$

где $C_{\text{гр}}$ – массовая концентрация бора в образце для градуировки, мг/дм³,

 $(C_{\text{гр}} = 1 \text{ мг/дм}^3 \text{ при использовании стандартного раствора бора по 5.4.2 или 0,73 мг/дм}^3 при использовании стандартного раствора ионов бора по 5.5.2);$

 $I_{\mbox{\tiny {\rm IP}}}$ - интенсивность флуоресценции градуировочного раствора по 5.6.3, отн. ед.;

 $I_{\mbox{\tiny {\rm IP}}}$ — интенсивность флуоресценции холостого образца по 5.6.4, отн. ед.

6 Порядок проведения определения

В мерную колбу вместимостью 25 см³ помещают 5 см³ пробы воды, добавляют 5 см³ смешанного реагента по 5.2, содержимое колбы доводят до метки раствором гидроокиси натрия по 5.3, перемешивают и сразу же измеряют интенсивность флуоресценции $I_{\scriptscriptstyle \rm HSM}$ или массовую концентрацию бора $C_{\scriptscriptstyle \rm HSM}$ при помощи анализатора.

7 Правила обработки результатов определения

- 7.1 При использовании анализатора, допускающего автоматическую градуировку массовую концентрацию бора в пробе $C_{\text{изм.}}$ мг/дм³, определяют на анализаторе по разделу 6.
- 7.2 При измерениях в «ручном режиме» массовую концентрацию бора в пробе $C_{\mbox{\tiny HSM}}$, мг/дм 3 вычисляют по формуле

$$C_{H3M} = f(I_{H3M} - I_0),$$
 (2)

где f— градуировочный коэффициент, вычисленный по 5.6.6;

 $I_{\text{изм}}$ - интенсивность флуоресценции пробы, измеренная прибором по 6, отн. ед.;

 I_0 — интенсивность флуоресценции холостой пробы, измеренная прибором по 5.6.4, отн. ед

Для расчета массовой концентрации ионов бората в пробе воды, полученные значения концентрации бора необходимо умножить на коэффициент 5.4.

8 Допустимая погрешность определения

8.1 Погрешность результатов определения при вероятности P=0.95 приведена в таблице 1.

Таблица 1

Диапазон измеряемой массовой концентрации бора, мг/дм ³	Границы допустимой относительной погрешности, %
От 0,05 до 0,1 включ.	±65
Св. 0,1 » 0,5 »	±50

» 0,5 » 2,5 »	±25
» 2,5 » 5,0 »	±10

8.2 Нормативы контроля точности при вероятности P=0,95 и числе измерений n=2 приведены в таблице 2.

Таблица 2

Диапазон измеряемой массовой концентрации бора, мг/дм	Нормативы контроля точности, %		
	Сходимости	воспроизводи-	погрешно-
	d	мости D	сти К
От 0,05 до 0,1 включ.	35	60	80
Св. 0,1 » 0,5 »	20	40	60
» 0,5 » 2,5 »	10	20	25
» 2,5 » 5,0 »	5	10	15

- 8.3 За результат определения принимают среднее арифметическое не менее двух параллельных определений, расхождение между которыми не должно превышать значения норматива сходимости *d*. Числовое значение результата определения должно оканчиваться цифрой того же разряда, что и значение допускаемого расхождения результатов параллельных определений.
- 8.4 Контроль точности измерений проводят в соответствии с правилами, изложенными в приложении Б.

9 Правила оформления результатов

Полученные результаты анализа регистрируют в протоколах, в которых указывают:

порядковый номер пробы;

дату отбора пробы и анализа;

результат измерения с указанием погрешности;

фамилию исполнителя.

Приложение А (обязательное)

Подготовка химической посуды для выполнения определений

При выполнении определений необходимо соблюдать чистоту химической посуды, руководствуясь следующими правилами:

А.1 Для мытья химической посуды необходимо использовать концентрированную серную или концентрированную азотную кислоту. Не допускается использовать соду, щелочи, все виды синтетических моющих средств, хромовую смесь.

Посуду предварительно моют водопроводной водой, затем наливают на $^{1}/_{2}$ объема кислоту, тщательно обмывают ею всю внутреннюю поверхность, а затем выливают в специальный сосуд.

Пипетки с использованием груши не менее трех раз промывают кислотой, заполняя ею пипетки выше метки. Посуду промывают дистиллированной водой не менее 5 раз.

- А.2 Для отбора каждого раствора необходимо использовать отдельную пипетку.
- А.З Для испытаний необходимо иметь отдельный набор посуды, который используют только для определения бора.
- А.4 Для хранения растворов, за исключением приготовляемых непосредственно перед выполнением анализа, необходимо использовать посуду из полиэтилена, кварца или стекла, не содержащего бор.

Приложение Б (рекомендуемое)

Правила проведения контроля точности

- Б.1 Контроль воспроизводимости
- Б.1.1 Контроль воспроизводимости осуществляют путем сравнения результатов контрольных испытаний (анализов) одной и той же пробы, выполненных по методу настоящего стандарта разными исполнителями, на разном оборудовании, с использованием реактивов разных партий, в разное время.
- Б.1.2 Для контрольных испытаний объем пробы должен соответствовать удвоенному объему, предусмотренному методом настоящего стандарта. Пробу делят на две равные части и проводят испытания в соответствии с Б.1.1.
- Б.1.3 Результат контроля считают удовлетворительным при условии

$$|X_1 - X_2| \le \frac{D}{100} \cdot \frac{(X_1 + X_2)}{2},$$
 (5.1)

где X_1, X_2 — результаты анализа пробы, полученные по Б.1.1, соответственно разными исполнителями, мг/дм³;

D — воспроизводимость (допускаемое расхождение между двумя результатами анализа одной и той же пробы), приведена в таблице 2 настоящего стандарта.

Если условие не выполняется, эксперимент повторяют. При повторном получении отрицательного результата выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

- Б.2 Контроль погрешности
- Б. 2.1 Контроль погрешности выполняют методом добавок.
- Б.2.2 Для контрольных испытаний объем пробы должен соответствовать удвоенному объему, предусмотренному методом настоящего стандарта.

Отобранный объем реальной пробы воды делят на две равные части, первую из которых анализируют в точном соответствии с методом на-

стоящего стандарта, и получают результат анализа пробы X. Во вторую часть вносят добавку бора (или бората) C, используя градуировочные растворы или государственные стандартные образцы состава растворов бора или бората, и анализируют в соответствии с метолом настоящего стандарта, получая результат анализа пробы с добавкой Y. Величина добавки должна составлять 30 — 100 % от обнаруженного содержания X. При необнаружении анализируемого компонента в исходной пробе воды добавка должна в 2—5 раз превышать концентрацию, соответствующую нижней границе диапазона измерения.

Результат контроля считают удовлетворительным при выполнении условия

$$|Y - X - C| \le \frac{K}{100} \cdot X, \quad (6.2)$$

где X— результат анализа пробы, мг/дм 3 ;

У— результат анализа пробы с добавкой, мг/дм³;

С — добавка определяемого компонента, мг/дм³;

К~ норматив контроля погрешности, %, приведенный в таблице 2 настоящего стандарта.

Если условие не выполняется, эксперимент повторяют. При повторном получении отрицательного результата выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

УДК МКС 13.060.20

Ключевые слова: вода питьевая, бор, борат, определение массовой концентрации, флуориметрия

11