

ГОСУЛАРСТВЕННЫЙ СТАНЛАРТ РЕСПУБЛИКИ КАЗАХСТАН

ВОДА ПИТЬЕВАЯ Методы определения содержания поверхностно – активных веществ

СТ РК ГОСТ Р 51211 - 2003

Издание официальное

Комитет по стандартизации, метрологии и сертификации Министерства индустрии и торговли Республики Казахстан (Госстандарт)

Астана

Предисловие

- **1 РАЗРАБОТАН И ВНЕСЕН** Республиканским государственным предприятием "Казахстанский институт стандартизации и сертификации"
- **2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ** приказом Комитета по стандартизации, метрологии и сертификации Министерства индустрии и торговли Республики Казахстан от 07 ноября 2003 г. № 380
- 3 Настоящий стандарт представляет собой аутентичный текст ГОСТ Р 51211-98, отражает потребности экономики Республики Казахстан, которые выделены в тексте курсивом.
 - 4 СРОК ПЕРВОЙ ПРОВЕРКИ ПЕРИОДИЧНОСТЬПРОВЕРКИ

2009 год 5 лет

5 ВВЕДЕН ВПЕРВЫЕ

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Комитета по стандартизации, метрологии и сертификации Министерства индустрии и торговли Республики Казахстан

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Метод 1	3
4 Метод 2	8
5 Метод 3	13
Приложение А Правила проведения контроля точности для	
методов 1 и 2	19
Приложение Б Правила проведения контроля точности	
для метода 3	21

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ КАЗАХСТАН

ВОДА ПИТЬЕВАЯ

Методы определения содержания поверхностно-активных веществ

Дата введения 2005.01.01

1 Область применения

Настоящий стандарт устанавливает методы определения массовой концентрации поверхностно-активных веществ в питьевой воде.

Метод 1 предназначен для определения массовой концентрации анионных поверхностно-активных веществ в питьевой воде флуориметрией в диапазоне концентраций $0,025 - 2,0 \text{ мг/дм}^3$ без разбавления пробы.

Метод 2 предназначен для определения массовой концентрации катионных поверхностно-активных веществ в питьевой воде флуориметрией в диапазоне концентраций $0{,}01-2{,}0$ мг/дм 3 без разбавления пробы.

Метод 3 предназначен для определения массовой концентрации анионных поверхностно-активных веществ в питьевой воде спектрофотометрией в диапазоне концентраций $0,015 - 0,25 \, \text{мг/дм}^3$.

Методы могут быть использованы для целей сертификации.

Допускается использовать методы для определения поверхностно-активных веществ в воде поверхностных и подземных источников хозяйственно-питьевого водоснабжения.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия

ГОСТ 2603-79 Ацетон. Технические условия

ГОСТ 3118-77 Кислота соляная. Технические условия

Издание официальное

ГОСТ 4198-75 Калий фосфорнокислый однозамещенный. Технические условия

ГОСТ 4199-76 Натрий тетраборнокислый 10-водный. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4328-77 Натрия гидроокись. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

 $\Gamma OCT~8.315$ -97 ΓCH . Стандартные образцы состава и свойств веществ и материалов. Основные положения

ГОСТ 24104-88 Весы лабораторные общего назначения и образцовые. Общие технические условия

СТ РК ГОСТ Р 51593-2000 Вода питьевая. Отбор проб

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29227-91 (ИСО 835-1—81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

3 Метод 1

3.1 Сущность метода

Метод основан на экстракции из пробы воды хлороформом ионных пар анионных поверхностно-активных веществ (АПАВ) с красителем (трипафлавин, акридиновый желтый или акридиновый оранжевый) и определении концентрации АПАВ по интенсивности флуоресценции полученного экстракта, регистрируемой флуориметром.

3.2 Средства измерений, вспомогательное оборудование, реактивы

Анализатор жидкости (флуориметр), позволяющий регистрировать флуоресценцию в области спектра 500 - 550 нм при возбуждении в области 400—480 нм с допускаемой погрешностью измерения $\pm~10~\%$.

Государственный стандартный образец состава анионных поверхностно-активных веществ, содержащий $0,1\,$ г додецилсульфата натрия.

Примечание — Γ CO должны быть утверждены или допущены к применению в PK по Γ OCT 8.315.

Весы лабораторные общего назначения, 2-го класса точности по ГОСТ 24104, с наибольшим пределом взвешивания 200 г.

Колбы мерные по ГОСТ 1770 вместимостью 25, 100 и 1000 см³ 2-го класса точности.

Пипетки градуированные по ГОСТ 29227 вместимостью 1, 2, 5, 10 cm^3 2-го класса точности исполнения 1, 2 и 6.

Стаканы лабораторные термостойкие вместимостью 500 и 1000 см 3 по Γ OCT 25336.

Колбы плоскодонные вместимостью 1000 см³ по ГОСТ 25336. Воронки делительные вместимостью 50 см³ по ГОСТ 25336.

Фильтры обеззоленные «красная лента».

Бумага индикаторная универсальная.

Вода дистиллированная по ГОСТ 6709.

Хлороформ, х.ч. или ч.д.а.

Натрия гидроокись по ГОСТ 4328, х.ч.

Кислота соляная по ГОСТ 3118 (плотность 1,19 г/см³), х.ч.

Красители: трипафлавин, ч. или акридиновый желтый, ч. или акридиновый оранжевый, ч.

3.3 Отбор проб

Пробы питьевой воды отбирают по СТ РК ГОСТ Р 51593.

Объем пробы воды для определения массовой концентрации АПАВ должен быть не менее $50~{\rm cm}^3$.

Срок хранения пробы от момента отбора пробы до проведения измерений не должен превышать 1 сут в нормальных климатических условиях.

Фильтровать пробу не допускается.

При необходимости пробу консервируют добавлением 2-4 см 3 хлороформа на 1 дм 3 пробы. Срок хранения консервированной пробы — не более 7 сут при температуре 4-6 0 C.

- 3.4 Порядок подготовки к проведению определения
- 3.4.1 Стеклянную посуду моют без применения составов, со-держащих поверхностно-активные вещества.
- $3.4.2~\Pi$ риготовление раствора красителя массовой концентрации $0,1~\mathrm{г/дm}^3$.

Для приготовления раствора красителя в мерную колбу вместимостью $100~{\rm cm}^3$ помещают навеску $10,0~{\rm mr}$ трипафлавина или акридинового желтого, или акридинового оранжевого, доводят объем до метки дистиллированной водой, раствор тщательно перемешивают. Раствор при наличии осадка следует отфильтровать через фильтр «красная лен-

та». Раствор пригоден для использования в течение 1 мес при хранении в стеклянной посуде в темноте в нормальных климатических условиях.

3.4.3 Приготовление раствора соляной кислоты объемной долей $5\ \%$

Для приготовления раствора соляной кислоты помещают в стакан из термостойкого стекла $250~{\rm cm}^3$ дистиллированной воды и медленно, при перемешивании, добавляют 5 ${\rm cm}^3$ соляной кислоты и затем разбавляют дистиллированной водой до $500~{\rm cm}^3$.

3.4.4 Приготовление раствора гидроокиси натрия массовой долей 5 %

Для приготовления раствора в стакан наливают 250 см³ дистиллированной воды и медленно добавляют 25 г гидроокиси натрия, тщательно перемешивая раствор. После полного растворения гидроокиси натрия раствор доводят дистиллированной водой до 500 см³. Раствор пригоден для использования в течение 2 мес при хранении в сосуде из полиэтилена в нормальных климатических условиях.

- 3.4.5 Приготовление растворов АПАВ
- 3.4.5.1 Раствор массовой концентрации АПАВ 100 мг/дм^3 готовят из государственного стандартного образца состава АПАВ путем растворения содержимого ампулы (0,1 r) в 1000 см^3 дистиллированной воды.

Примечание — ΓCO должны быть утверждены или допущены к применению в PK по $\Gamma OCT~8.315$.

Раствор пригоден для использования в течение 1 мес при хранении в нормальных климатических условиях.

В мерную колбу вместимостью 500 см³ помещают точную навеску 50 мг додецилсульфата натрия, растворяют в дистиллированной воде и разбавляют раствор до метки дистиллированной водой.

3.4.5.2 Градуировочный раствор массовой концентрации АПАВ 1,0 мг/дм³ готовят разбавлением 10 см³ раствора АПАВ концентрации 100 мг/дм³ в мерной колбе вместимостью 1000 см³, доводя объем раствора до метки дистиллированной водой.

Раствор используют в день приготовления.

- 3.4.6 Подготовка анализатора к измерениям и его градуировка
- 3.4.6.1 Подготовка прибора к работе проводится в соответствии с инструкцией изготовителя. Возбуждение флуоресценции проводится в интервале длин волн 430—470 нм, регистрация флуоресценции в интервале 500—550 нм.

- 3.4.6.2 Градуировку анализатора осуществляют измерением интенсивности флуоресценции экстрактов градировочного раствора и холостой пробы.
- 3.4.6.3 Для приготовления экстракта градировочного раствора в делительную воронку вместимостью $50~{\rm cm}^3$ помещают $5~{\rm cm}^3$ раствора АПАВ концентрации $1~{\rm mr/дm}^3$ по 3.4.5.2, добавляют $4~{\rm cm}^3$ дистиллированной воды, $1,0~{\rm cm}^3$ раствора соляной кислоты по 3.4.3, $1~{\rm cm}^3$ раствора красителя по 3.4.2, $5~{\rm cm}^3$ хлороформа и проводят экстракцию в течение $30~{\rm c}$ путем переворачивания делительной воронки. После разделения фаз $2,5-3~{\rm cm}^3$ экстракта (нижнего слоя) помещают в кювету анализатора и измеряют интенсивность флуоресценции градировочного раствора $I_{\rm гp}$
- 3.4.6.4 Экстракт холостой пробы готовят, используя вместо раствора АПАВ дистиллированную воду. В делительную воронку помещают 9 см³ дистиллированной воды. 1,0 см³ раствора соляной кислоты по 3.4.3, 1 см³ раствора красителя и 5 см³ хлороформа. После разделения фаз 2,5—3 см³ экстракта (нижнего слоя) помещают в кювету анализатора и измеряют интенсивность флуоресценции I_0 .
- 3.4.6.5 При использовании анализатора, предусматривающего автоматическую градуировку, настройку режима «Фон» проводят по экстракту холостой пробы; для градуировки используют экстракт градировочного раствора.
 - 3.4.6.6 Для получения результатов определения АПАВ в «руч-

$$f = \frac{c_{ep}}{I_{ep} - I_0}$$

где c_{rp} — массовая концентрация АПАВ в градировочном растворе, ($c_{rp} = 1 \text{ мг/дм}^3$);

 $I_{\rm rp}$ — интенсивность флуоресценции экстракта градировочного раствора по 3.4.6.3, отн.ед.;

 I_0 —интенсивность флуоресценции экстракта холостой пробы по 3.4.6.4, отн.ед.

- 3.5 Порядок проведения определения
- 3.5.1 Используя универсальный индикатор, определяют рН пробы воды, отобранной по 3.3. рН пробы должен быть в пределах 5-8 ед. Если рН отличается от указанного значения, его корректируют добавлением раствора гидроокиси натрия по 3.4.4 или раствора соляной кисло-

- ты по 3.4.3. Помещают 5 см³ пробы воды и 4 см³ дистиллированной воды в делительную воронку вместимостью 50 см³. Затем в делительную воронку с пробой добавляют 1,0 см³ раствора соляной кислоты по 3.4.3, 1 см³ раствора красителя по 3.4.2, 5 см³ хлороформа и проводят экстракцию в течение 30 с путем переворачивания делительной воронки. После разделения фаз отбирают в кювету 2,5 3 см³ экстракта (нижнего слоя) и измеряют интенсивность флуоресценции $I_{\text{изм}}$ или концентрацию АПАВ $c_{\text{изм}}$ анализатором.
- 3.5.2 Если измеренная концентрация АПАВ превышает 2 мг/дм³, то экстракт (2 см³) разбавляют хлороформом до метки в мерной колбе вместимостью 25 см³ и повторно проводят измерение. Если после экстракции водный слой не окрашен, определение необходимо повторить с новой порцией пробы воды, добавляя больший объем красителя (2-5 см³).
 - 3.6 Правила обработки результатов определения
- 3.6.1 При использовании анализатора, допускающего автоматическую градуировку, массовую концентрацию АПАВ в экстракте $c_{\text{изм}}$ (мг/дм³) определяют на приборе в процессе измерения.
- 3.6.2 При измерениях в «ручном режиме» концентрацию АПАВ в экстракте с_{изм.} (мг/дм³), вычисляют по формуле

$$C_{\text{\tiny H3M}} = f \cdot (I_{\text{\tiny H3M}} - I_0) \tag{2}$$

Где f - градуировочный коэффициент, вычисленный по 3.4.6.6;

 $I_{_{\rm ИЗМ}}$ — интенсивность флуоресценции экстракта пробы, измеренная прибором по 3.5.1, отн.ед.;

- I_{\circ} интенсивность флуоресценции экстракта холостой пробы, измеренная прибором по 3.4.6.4, отн. ед.
- 3.6.3 Массовую концентрацию АПАВ в пробе воды c, (мг/дм³), вычисляют по формуле

$$c = c_{\text{H3M}}k, \tag{3}$$

где $c_{\text{изм}}$ — концентрация АПАВ, измеренная анализатором по 3.6.1 или вычисленная по 3.6.2, мг/дм³;

k— коэффициент разбавления экстракта. Если экстракт не разбавляют, то k=1; при разбавлении экстракта до 25 см³ k=5.

- 3.7 Допустимая погрешность
- 3.7.1 Погрешность результатов определения при вероятности P=0.95 приведена в таблице 1.

Таблина 1

Диапазон измеряемой массовой концентрации АПАВ, мг/дм ³	Границы погрешности, %
От 0,025 до 0,1 включ.	±65
Св. 0,1 » 1,0 »	±50
» 1,0 » 2,0 »	±25

3.7.2 Нормативы контроля точности при вероятности P=0.95 и числе измерений n приведены в таблице 2.

Таблица 2

Диапазон измеряемой мас- совой концентрации	Нормативы контроля точности, %			Нормативы контроля точности, %	
АПАВ, мг/дм ³	cходимости d	воспроизводимости D	погрешности К		
От 0,025 до 0,1 включ. Св. 0,1 » 1,0 » » 1,0 » 2,0 »	25 15 8	65 50 25	80 65 40		

- 3.7.3 За результат определения принимают среднее арифметическое не менее двух параллельных определений, расхождение между которыми не должно превышать значение норматива сходимости *d*. Числовое значение результата определения должно оканчиваться цифрой того же разряда, что и значение допускаемого расхождения результатов параллельных определений.
- 3.7.4 Контроль точности измерений проводят в соответствии с правилами, изложенными в приложении A.
 - 3.8 Правила оформления результатов

Полученные результаты анализа регистрируют в протоколах, в которых указывают: порядковый номер пробы;

дату отбора пробы и анализа; результат измерения с указанием погрешности; фамилию исполнителя.

4 Метод 2

4.1 Сущность метода

Метод основан на экстракции из пробы воды хлороформом ионных пар катионных поверхностно-активных веществ (КПАВ) с красителем (эозин) и определении концентрации КПАВ по интенсивности флуоресценции полученного экстракта, регистрируемой флуориметром.

4.2 Средства измерения, вспомогательное оборудование, реактивы

Анализатор жидкости (флуориметр), позволяющий регистрировать флуоресценцию в области спектра 550—600 нм при возбуждении в области 480—550 нм, с допускаемой погрешностью измерения ± 10 %.

Государственный стандартный образец состава катионных поверхностно-активных веществ, содержащий 0,1 г цетилпиридиния.

Весы лабораторные общего назначения, 2-го класса точности по ГОСТ 24104 с наибольшим пределом взвешивания 200 г.

Колбы мерные по ГОСТ 1770 вместимостью 25, 100 и 1000 см³ 2-го класса точности.

Пипетки мерные по ГОСТ 29227 вместимостью 1, 2, 5, 10 см^3 2-го класса точности исполнения 1,2 и 6.

Стаканы лабораторные термостойкие вместимостью 500 и 1000 см³ по ГОСТ 25336.

Колбы плоскодонные вместимостью 1000 см^3 по $\Gamma \text{OCT } 25336$,

Воронки делительные вместимостью 50 см³ по ГОСТ 25336.

Пробирки мерные с делениями Г2-10-0,1 ХС по ГОСТ 1770

Фильтры обезволенные «красная лента».

Бумага индикаторная универсальная.

Вода дистиллированная по ГОСТ 6709.

Хлороформ, х.ч. или ч.д.а.

Ацетон по ГОСТ 2603, ч.д.а.

Натрия гидроокись по ГОСТ 4328, х.ч.

Кислота соляная по ГОСТ 3118 (плотность 1,19 г/см³), х.ч.

Натрий тетраборнокислый, 10-водный по ГОСТ 4199, ч.д.а. Краситель эозин. ч.д.а.

4.3 Отбор проб

Пробы питьевой воды отбирают по ГОСТ 24481.

Объем пробы воды для определения массовой концентрации КПАВ должен быть не менее $50~{\rm cm}^3$.

Срок хранения пробы от момента отбора пробы до проведения измерений не должен превышать 1 сут в нормальных климатических условиях. Фильтровать пробу не допускается.

- 4.4 Порядок подготовки к проведению определения
- 4.4.1 Подготовка посуды по 3.4.1.
- 4.4.2 Приготовление раствора красителя массовой концентрации $100~{\rm Mr/дm}^3$

В мерную колбу вместимостью $100~{\rm cm}^3$ помещают точную навеску $10,0~{\rm mr}$ эозина, доводят объем до метки дистиллированной водой, раствор тщательно перемешивают. Раствор при наличии осадка следует отфильтровать через фильтр «красная лента». Раствор пригоден для использования в течение $2~{\rm mec}$ при хранении в стеклянной посуде в темноте в нормальных климатических условиях.

Приготовление раствора красителя массовой концентрации $10 \, \mathrm{Mr/дm^3}$

В мерную колбу вместимостью 50 см³ помещают 5 см³ раствора эозина концентрации 100 мг/дм³ и доводят объем до метки дистиллированной водой. Раствор пригоден для использования в течение недели при хранении в стеклянной посуде в темноте в нормальных климатических условиях.

- 4.4.3 Приготовление раствора соляной кислоты объемной долей 5 % по 3.4.3.
- 4.4.4 Приготовление раствора натрия тетраборнокислого молярной концентрации 0,05 моль/дм 3 .

В мерную колбу вместимостью 200 см³ помещают навеску 3,8 г натрия тетраборноокислого 10 - водного, растворяют в дистиллированной воде и доводят раствор до метки дистиллированной водой. Раствор пригоден для использования в течение 2 мес при хранении в сосуде из полиэтилена в нормальных климатических условиях.

- 4.4.5 Приготовление раствора гидроокиси натрия массовой долей 5 % по 3.4.4.
 - 4.4.6 Приготовление растворов КПАВ

4.4.6.1 Раствор массовой концентрации КПАВ 100 мг/дм^3 готовят из государственного стандартного образца состава КПАВ путем растворения содержимого ампулы (0,1 г) в 1000 см^3 дистиллированной воды.

Раствор пригоден для использования в течение 1 мес при хранении в нормальных климатических условиях.

4.4.6.2 Градировочный раствор массовой концентрации КПАВ 1 мг/дм³ готовят разбавлением $10~{\rm cm}^3$ раствора КПАВ концентрации $100~{\rm mr/дm}^3$ в мерной колбе вместимостью $1000~{\rm cm}^3$, доводя объем до метки дистиллированной водой.

Раствор используют в день приготовления.

- 4.4.7 Подготовка анализатора к измерениям и его градуировка
- 4.4.7.1 Подготовку прибора к работе проводят в соответствии с инструкцией изготовителя. Возбуждение флуоресценции проводится в интервале длин волн 510—530 нм, регистрация флуоресценции в интервале 570—590 нм.
- 4.4.7.2 Градуировку анализатора осуществляют измерением интенсивности флуоресценции экстрактов градировочного раствора и холостой пробы.
- 4.4.7.3 Для приготовления экстракта градировочного раствора в делительную воронку вместимостью 50 см³ помещают 5 см³ раствора КПАВ концентрации 1 мг/дм³ по 4.4.6.2, добавляют 2 см³ раствора натрия тетраборнокислого по 4.4.4, 0,5 см³ раствора красителя массовой концентрации 10 мг/дм³ по 4.4.2, 5 см³ хлороформа и проводят экстракцию в течение 30 с переворачиванием делительной воронки. После разделения фаз отбирают 4 см³ экстракта (нижнего слоя) в пробирку, смещивают с 1 см³ ацетона и 2,5—3 см³ смеси помещают в кювету анализатора. Измеряют интенсивность флуоресценции экстракта градировочного раствора $I_{1,rp}$ или используют приготовленный экстракт для автоматической градуировки. Следует избегать попадания водной фазы в смесь хлороформа и ацетона.
- $4.4.\overline{7.4}$ Экстракт холостой пробы готовят, используя вместо стандартного раствора КПАВ дистиллированную воду. В делительную воронку помещают 5 см³ дистиллированной воды, 0,5 см³ раствора красителя массовой концентрации $10~\rm mr/дm³$ по 4.4.2, 2 см³ раствора натрия тетраборнокислого по $4.4.4~\rm u$ 5 см³ хлороформа. После разделения фаз отбирают $4~\rm cm³$ экстракта (нижнего слоя) в пробирку, смешивают с $1~\rm cm³$ ацетона и $2.5~\rm m³$ смеси помещают в кювету анализатора. Из-

меряют интенсивность фоновой флуоресценции $I_{I,0}$ или используют этот экстракт для настройки режима «Фон».

- 4.4.7.5 При использовании анализатора, предусматривающего автоматическую градуировку, настройку режима «Фон» проводят по экстракту холостой пробы, для градуировки используют экстракт градировочного раствора.
- 4.4.7.6 Для получения результатов определения КПАВ в «ручном режиме» вычисляют градировочный коэффициент f_1 по формуле

$$f_1 = \frac{c_{1,zp}}{I_{1,zp} - I_{1,0}} \tag{4}$$

где $c_{1,rp}$ — массовая концентрация КПАВ в градировочном растворе, $(c_{1,rp}=1 \text{ MF/дM}^3);$

 $I_{1,rp}$ — интенсивность флуоресценции экстракта градировочного раствора, измеренная по 4.4.7.3, отн.ед.;

 $I_{1,o}$ — интенсивность флуоресценции экстракта холостой пробы, измеренная по 4.4.7.4, отн.ед.

- 4.5 Порядок проведения определения
- 4.5.1 Используя универсальный индикатор, контролируют рН пробы воды, отобранной по 4.3. рН должен быть в пределах 5-9 ед. Если рН пробы отличается от указанного значения, его корректируют добавлением раствора гидроокиси натрия по 4.4.5 или соляной кислоты по 4.4.3. Помещают 5 см 3 пробы в делительную воронку вместимостью 250 см 3 , добавляют 0.5 см 3 раствора красителя массовой концентрации 10 мг/дм 3 по 4.4.2, 2 см 3 раствора натрия тетраборнокислого по 4.4.4, 5 см 3 хлороформа и проводят экстракцию в течение 30 с переворачиванием делительной воронки. После разделения фаз отбирают 4 см 3 экстракта (нижнего слоя) в пробирку, смешивают с 1 см 3 ацетона и, отбирая в кювету 2-3 см 3 полученного раствора, измеряют интенсивность флуоресценции $I_{1,1335}$, или концентрацию КПАВ $c_{1,1335}$ анализатором.

Если измеренная концентрация КПАВ превышает 2 мг/дм 3 , то экстракт (5 см 3) разбавляют хлороформом до метки в мерной колбе вместимостью 25 см 3 и повторно проводят измерение. Если после экстракции водный слой не окрашен, определение необходимо повторить с новой порцией пробы воды, добавляя больший объем красителя (2 — 5 см 3).

- 4.6 Правила обработки результатов определения
- 4.6.1 При использовании анализатора, допускающего автоматическую градуировку, массовую концентрацию КПАВ в экстракте $c_{1,изм}$, (мг/дм³) определяют на приборе в процессе измерения.
- 4.6.2~ При измерениях в «ручном режиме» массовую концентрацию КПАВ в экстракте с_{1,153.4.} (мг/дм³), вычисляют по формуле

$$c_{1, u_{3M}} = f_1(I_{1, u_{3M}} - I_{1,0}), (5)$$

Где f_1 — градировочный коэффициент, вычисленный по 4.4.7.6; $I_{1,\text{изм}}$ - интенсивность флуоресценции экстракта пробы, измеренная прибором по 4.5.1,отн.ед.;

 $I_{1,0}$ – интенсивность флуоресценции экстракта холостой пробы, измеренная прибором по 4.4.7.4, отн.ед.

4.6.3 Массовую концентрацию КПАВ в пробе воды c_1 , (мг/дм³), вычисляют по формуле

$$\mathbf{c}_1 = \mathbf{c}_{1,\text{\tiny HSM}} \cdot \mathbf{k}_1 \mathbf{k}_2 \tag{6}$$

где k_1 - коэффициент разбавления экстракта.

Если экстракт не разбавляют, то $k_l = 1$; при разбавлении экстракта до 25 см³ $\mathbf{k}_1 = 5$;

- k_2 степень концентрирования пробы при экстракции. Если объем пробы 5 см³, то k_2 = 1; при объеме пробы 20 см³ k_2 =0,25.
 - 4.7 Допустимая погрешность определения
- 4.7.1~ Погрешность результатов определения при вероятности P=0.95~ приведена в таблице 3.

Таблица 3

Диапазон измеряемой массовой концентрации КПАВ, мг/дм ³	Границы погрешности, %
От 0,01 до 0,1 включ.	±65
Св. 0,1 » 1,0 »	±50
» 1,0 » 2,0 »	±25

 $4.7.2\;$ Нормативы контроля точности при вероятности $P=0,95\;$ и числе измерений $n=2\;$ приведены в таблице $4.\;$

Таблица 4

Диапазон измеряемой массовой концентрации	Нормативы контроля точности, %		
КПАВ, мг/дм ³	еходимости <i>d</i>	воспроизво- димости D	погрешности К
От 0,01 до 0,1 включ.	30	80	95
Св. 0,1 » 1,0 »	20	40	65
» 1,0 » 2,0 »	15	25	40

- 4.7.3 За результат определения принимают среднее арифметическое результатов не менее двух параллельных определений, расхождение между которыми не должно превышать значение норматива сходимости *d*. Числовое значение результата определения должно оканчиваться цифрой того же разряда, что и значение допускаемого расхождения результатов параллельных определений.
 - 4.7.4 Контроль точности по 3.7.4.
 - 4.8 Правила оформления результатов по 3.8.

5 Метод 3

5.1 Сущность метода

Метод основан на образовании в щелочной среде ассоциатов анионных поверхностно-активных веществ с метиленовым синим и экстракции этих ассоциатов хлороформом с последующей обработкой полученного экстракта кислотой для устранения мешающих факторов и определении концентрации АПАВ по оптической плотности полученного экстракта спектрофотометрией.

5.2 Средства измерений, вспомогательное оборудование, реактивы

Спектрофотометр или фотоколориметр, позволяющий регистрировать оптическую плотность при длине волны 650 нм с пределом допускаемых значений основной абсолютной погрешности измерения коэффициента пропускания $\pm 2~\%$.

Государственный стандартный образец состава анионных поверхностно-активных веществ, содержащий 0,1 г додецилсульфата натрия.

Весы лабораторные общего назначения 2-го класса точности по ГОСТ 24104 с наибольшим пределом взвешивания 200 г.

pH-метр лабораторный с пределом допускаемых значений основной абсолютной погрешности $\pm 0,1$ ед.pH.

Колбы мерные по ГОСТ 1770 вместимостью 25, 50, 100 и 1000 ${\rm cm}^3$ 2-го класса точности.

Пипетки градуированные по ГОСТ 29227 вместимостью 5 и 10 см 2 2-го класса точности исполнения 1, 2 и 6.

Цилиндры мерные по ГОСТ 1770 вместимостью 5, 10, 100 и $1000~{\rm cm}^3$ 2-го класса точности.

Стаканы химические вместимостью 1000 и $2000~{\rm cm}^3$ по ΓOCT 25336.

Воронки делительные вместимостью 250 см³ по ГОСТ 25336.

Бумага индикаторная универсальная.

Вода дистиллированная по ГОСТ 6709.

Хлороформ, х.ч. или ч.д.а.

Натрия гидроокись по ГОСТ 4328, х.ч.

Кислота серная по ГОСТ 4204 (плотность 1,83 г/см³), х.ч.

Кислота азотная по ГОСТ 4461, х.ч.

Калий фосфорнокислый однозамещенный по ГОСТ 4198, ч.д.а. Метиленовый синий, ч.

- 5.3 Отбор проб по 3.3. Объем пробы воды должен быть не менее $200~\mbox{cm}^3.$
 - 5.4 Порядок подготовки к проведению определения
 - 5.4.1 Подготовка посуды по 3.4.1.
- 5.4.2 Приготовление нейтрального раствора метиленового синего

Для приготовления нейтрального раствора метиленового синего помещают в мерную колбу вместимостью 1000 см² 0,35 г метиленового синего, добавляют 500 см³ дистиллированной воды и оставляют на 24 ч до полного растворения навески. Содержимое колбы перемешивают и доводят объем раствора до метки дистиллированной водой. Раствор пригоден для использования в течение 6 мес при хранении в нормальных климатических условиях.

5.4.3 Приготовление кислого раствора метиленового синего

Для приготовления кислого раствора метиленового синего помещают в мерную колбу вместимостью 1000 см³ 0,35 г метиленового синего, растворяют его в небольшом количестве дистиллированной воды, добавляют к раствору 6,5 см³ серной кислоты и доводят объем раствора до метки дистиллированной водой. Раствор готовят за 24 ч до использования. Раствор пригоден для использования в течение 6 мес при хранении в нормальных климатических условиях.

- 5.4.4 Приготовление фосфатного буферного раствора 16,33 г калия фосфорнокислого помещают в стакан вместимостью 2 дм³ и растворяют его в 1,2 дм³ дистиллированной воды, отмеривая воду цилиндром. Затем помещают в стакан вместимостью 1 дм³ 5,04 г гидроокиси натрия и растворяют ее в 630 см³ дистиллированной воды, отмеривая воду цилиндром. Оба раствора смешивают в стакане вместимостью 2 дм³, доливая, водный раствор гидроокиси натрия в раствор фосфорнокислого калия и выдерживают в течение суток. Измеряют рН-метром значение рН полученного буферного раствора. рН раствора должно быть равно 10 ед. При необходимости доводят значение рН до 10, прибавляя небольшими порциями раствор фосфорнокислого калия (если рН больше 10) или раствор гидроокиси натрия (если рН меньше 10).
 - 5.4.5 Готовят растворы АПАВ по 3.4.5.
 - 5.4.6 Готовят градировочные растворы АПАВ.

Для приготовления градировочных растворов АПАВ в 6 мерных колб вместимостью $100~{\rm cm}^3$ помещают, отмеривая пипетками соответствующей вместимости, $1,0;\ 2,0;\ 5,0;\ 10,0;\ 25,0\ {\rm cm}^3$ раствора АПАВ массовой концентрации $1~{\rm mr/дm}^3$ по $5.4.5~{\rm u}$ доводят объемы растворов в каждой колбе до метки дистиллированной водой. Одну колбу наполняют до метки дистиллированной водой; раствор АПАВ не помещают (холостая проба). Массовая концентрация додецилсульфата натрия в приготовленных градировочных растворах $c~({\rm mr/дm}^3)$ составляет соответственно $0;\ 0,01;\ 0,02;\ 0,05;\ 0,1~{\rm u}\ 0,25~{\rm mr/дm}^3$. Градировочные растворы используют в день приготовления.

- 5.4.7 Подготовку спектрофотометра (фотоколориметра) к измерениям проводят в соответствии с инструкцией изготовителя.
 - 5. 5 Порядок проведения определения
- 5.5.1 Обработка проб воды, градировочных растворов и холостой пробы
- 5.5.1.1 Каждую пробу, включая градировочные растворы и холостую пробу ($100~{\rm cm}^3$ дистиллированной воды) обрабатывают следую-

щим образом. 100 см³ каждого испытуемого раствора помещают в делительную воронку вместимостью 250 см³, пипеткой добавляют 10 см³ фосфатного буферного раствора по 5.4.4 и 5 см³ нейтрального раствора метиленового синего по 5.4.2. Содержимое воронки перемешивают и добавляют 10 см³ хлороформа. Смесь энергично встряхивают в течение 2 мин и после расслоения фаз нижний слой сливают в другую делительную воронку, содержащую 100 см³ дистиллированной воды и 5 см³ кислого раствора метиленового синего по 5.4.3. Содержимое второй воронки встряхивают в течение 1 мин и оставляют для расслоения фаз, затем нижний слой сливают в мерную колбу вместимостью 25 см³ через воронку с ватой, смоченной хлороформом.

- 5.5.1.2 В первую делительную воронку вновь наливают 10 см³ хлороформа и повторяют операции экстрагирования по 5.5.1.1. Нижний слой сливают в одну и ту же мерную колбу.
- 5.5.1.3 В первую делительную воронку добавляют 5 см 3 хлороформа и повторяют операции экстрагирования по 5.5.1.1. Объединенные в мерной колбе 3 порции экстракта доводят до метки хлороформом и измеряют не менее двух раз оптическую плотность экстракта D (D_r , $D_{\rm изм}$) относительно холостой пробы на спектрофотометре или фотоколориметре при длине волны 650 нм в кюветах толщиной слоя 30—50 мм,

Значение оптической плотности экстракта холостой пробы D_{θ} относительно хлороформа при использовании кюветы толщиной слоя 30 мм не должно превышать 0.06.

- $5.5.2\,$ Вычисляют среднее арифметическое результатов двух параллельных определений D.
- 5.5.3 Строят градировочный график, выражающий зависимость оптической плотности от массовой концентрации АПАВ c_{rp} (мг/дм³). Градуировочный коэффициент вычисляют по формуле

$$f_2 = \frac{c_{\tilde{a}\delta}}{D_{\tilde{a}\delta}} \tag{7}$$

где c_{rp} — массовая концентрация АПАВ в градировочном растворе по 5.4.6;

 D_{rp} — оптическая плотность экстракта градировочного раствора по 5.5.1.3.

Вычисляют среднее арифметическое результатов f_2 .

5.5.4 Градуировку повторяют при замене реактивов и после ремонта прибора, но не реже 1 раза в 3 мес.

При каждом испытании выполняют анализ одного градировочного раствора с целью проверки стабильности градировочного коэффициента f_2 . Отклонение значения f_2 от полученного при градуировке по 5.5.3 не должно превышать 15%.

Если градировочный коэффициент нестабилен, повторяют проверку с использованием других градировочных растворов, предусмотренных методикой.

- 5.6 Правила обработки результатов определения
- $5.6.1\,$ Массовую концентрацию АПАВ в пробе воды c_2 , мг/дм 3 , вычисляют по формуле

$$\mathbf{c}_2 = \mathbf{f}_2 \cdot \mathbf{D}_{\text{\tiny M3M}},\tag{7}$$

где f_2 — градировочный коэффициент, вычисленный по 5.5.3;

 $D_{\mbox{\tiny H3M}}$ - оптическая плотность экстракта исследуемой пробы воды по 5.5.1.3.

- 5.7 Допустимая погрешность определения
- $5.7.1\,$ Погрешность результатов определения при вероятности $P=0.95\,$ приведена в таблице $5.\,$

Таблица 5

Диапазон измеряемой массовой концентрации АПАВ, мг/дм ³	Границы погрешности (Д), мг/дм ³
От 0,015 до 0,1 включ	$\pm (0.003+0.18c_2)$
Св. 0,1 » 0,25 »	$\pm (0,01+0,11c_2)$

5.7.2 Нормативы контроля точности при вероятности P= 0.95 и числе измерений π =2 приведены в таблице 6.

Таблица 6

Диапазон измеряемой массовой концентрации	Нормативы контроля точности, мг/дм ³	
АПАВ, мг/дм ³	сходимости <i>d</i>	воспроизводимости D
От 0,015 до 0,1 включ. Св. 0,1 » 0,25 »		$0.003 + 0.31c_2 0.02 + 0.09c_2$

- 5.7.3 За результат определения принимают среднее арифметическое результатов не менее двух параллельных определений, расхождение между которыми не должно превышать значение норматива сходимости *d*. Числовое значение результата определения должно оканчиваться цифрой того же разряда, что и значение допускаемого расхождения результатов параллельных определений.
- 5.7.4 Контроль точности измерений проводят в соответствии с правилами, изложенными в приложении Б.
 - 5.8 Правила оформления результатов по 3.8.

Приложение А

(рекомендуемое)

Правила проведения контроля точности для методов 1 и 2

А.1 Контроль воспроизводимости

- А 1.1 Контроль воспроизводимости осуществляют путем сравнения результатов контрольных испытаний (анализов), проведенных на одной и той же пробе, выполненных по одному и тому же методу настоящего стандарта разными исполнителями на разном оборудовании с использованием реактивов разных партий, в разное время.
- А 1.2 Для контрольных испытаний объем пробы должен соответствовать удвоенному объему, предусмотренному методом настоящего стандарта. Пробу делят на две равные части и проводят испытания в соответствии с А.1.1.
- А. 1.3 Результат контроля считают удовлетворительным при условии

$$|X_1 - X_2| \le \frac{D}{100} \cdot \frac{(X_1 + X_2)}{2}$$
 (A.1)

где X_1 , X_2 — результаты анализа пробы, полученные по A.1.1 соответственно разными исполнителями, мг/дм³;

D — значение норматива контроля воспроизводимости (допускаемое расхождение между двумя результатами анализа одной и той же пробы), %, по таблицам 2 и 4 настоящего стандарта.

Если условие не выполняется, эксперимент повторяют. При повторном получении отрицательного результата выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

- А.2 Контроль погрешности
- А.2.1 Контроль погрешности выполняют методом добавок.
- А.2.2 Для контрольных испытаний объем пробы должен соответствовать удвоенному объему, предусмотренному методом настоящего стандарта.

Отобранный объем пробы воды делят на две равные части, первую из которых анализируют в точном соответствии с методом настоя-

щего стандарта и получают результат анализа пробы X, (мг/дм³). Во вторую часть вносят добавку поверхностно-активных веществ c, (мг/дм³), используя градировочные растворы или государственные стандартные образцы, и анализируют в соответствии с методом настоящего стандарта, получая результат анализа пробы с добавкой K, (мг/дм³). Значение добавки должно составлять 30—100 % от обнаруженного содержания X. При не обнаружении анализируемого компонента в исходной пробе воды добавка должна в 2 — 5 раз превышать концентрацию, соответствующую нижней границе диапазона измерения.

Результат контроля считают удовлетворительным при выполнении условия:

$$\left|Y - X - c\right| \le \frac{K}{100} \cdot X,\tag{A.2}$$

где K — значение норматива контроля погрешности, %, по таблицам 2 и 4

Если условие не выполняется, эксперимент повторяют. При повторном получении отрицательного результата выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

Приложение Б

(рекомендуемое)

Правила проведения контроля точности для метода 3

- Б.1 Контроль воспроизводимости
- Б. 1.1 Контроль воспроизводимости осуществляют путем сравнения результатов контрольных испытаний (анализов), проведенных на одной и той же пробе, выполненных по одному и тому же методу настоящего стандарта разными исполнителями на разном оборудовании с использованием реактивов разных партий в разное время.
- Б. 1.2 Для контрольных испытаний объем пробы должен соответствовать удвоенному объему, предусмотренному методом настоящего стандарта. Пробу делят на две равные части и проводят испытания в соответствии с Б.1.1.
- Б. 1.3 Результат контроля считают удовлетворительным при условии

$$\left|X_1 - X_2\right| \le D,$$

- где X_{1} , X_{2} результаты анализа пробы, полученные по Б.1.1 соответственно разными исполнителями, мг/дм³;
- D значение норматива контроля воспроизводимости (допускаемое расхождение между двумя результатами анализа одной и той же пробы), мг/дм 3 по таблице 6 настоящего стандарта.

Если условие не выполняется, эксперимент повторяют. При повторном получении отрицательного результата выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

- Б.2 Контроль погрешности
- Б.2.1 Контроль погрешности выполняют методом добавок.
- Б.2.2 Для контрольных испытаний объем пробы должен соответствовать удвоенному объему, предусмотренному методом настоящего стандарта.

Отобранный объем пробы воды делят на две равные части, первую из которых анализируют в точном соответствии с методом настоящего стандарта, и получают результат анализа пробы X, (мг/дм³). Во вторую часть вносят добавку поверхностно-активных веществ с, (мг/дм³), используя градуировочные растворы или государственные стандартные образцы, и анализируют в соответствии с методом настоя-

щего стандарта, получая результат анализа пробы с добавкой Y, (мг/дм 3). Значение добавки должно составлять 30-100% от обнаруженного содержания X. При не обнаружении поверхностно-активных веществ в исходной пробе воды добавка должна в 2 - 5 раз превышать концентрацию, соответствующую нижней границе диапазона измерения.

Результат контроля считают удовлетворительным при выполнении условия:

$$|Y - X - c| \le K \tag{5.2}$$

Значение К для вероятности 0,90 вычисляют по формуле

$$K = 0.84\sqrt{\Delta_x^2 + \Delta_y^2},\tag{5.3}$$

где Δ_x и Δy - значения погрешности результатов измерения соответственно для пробы без добавки и пробы с добавкой, вычисленные по формулам, приведенным в таблице 5 настоящего стандарта.

Если условие не выполняется, эксперимент повторяют. При повторном получении отрицательного результата выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

удк мкс

Ключевые слова: вода питьевая, анионные и катионные поверхностно-активные вещества, определение массовой концентрации, флуориметрия, спектрофотометрия